Cargando…
Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage
BACKGROUND: Hematoma enlargement (HE) is a common complication following acute intracerebral hemorrhage (ICH) and is associated with early deterioration and unfavorable clinical outcomes. This study aimed to evaluate the predictive performance of a computed tomography (CT) based model that utilizes...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423600/ https://www.ncbi.nlm.nih.gov/pubmed/37581173 http://dx.doi.org/10.2147/IJGM.S408725 |
_version_ | 1785089488571072512 |
---|---|
author | Bo, Ruting Xiong, Zhi Huang, Ting Liu, Lingling Chen, Zhiqiang |
author_facet | Bo, Ruting Xiong, Zhi Huang, Ting Liu, Lingling Chen, Zhiqiang |
author_sort | Bo, Ruting |
collection | PubMed |
description | BACKGROUND: Hematoma enlargement (HE) is a common complication following acute intracerebral hemorrhage (ICH) and is associated with early deterioration and unfavorable clinical outcomes. This study aimed to evaluate the predictive performance of a computed tomography (CT) based model that utilizes deep learning features in identifying HE. METHODS: A total of 408 patients were retrospectively enrolled between January 2015 and December 2020 from our institution. We designed an automatic model that could mask the hematoma area and fusion features of radiomics, clinical data, and convolutional neural network (CNN) in a hybrid model. We assessed the model’s performance by using confusion matrix metrics (CM), the area under the receiver operating characteristics curve (AUC), and other statistical indicators. RESULTS: After automated masking, 408 patients were randomly divided into two cohorts with 204 patients in the training set and 204 patients in the validation set. The first cohort trained the CNN model, from which we then extracted radiomics, clinical data, and CNN features for the second validation cohort. After feature selection by K-highest score, a support vector machines (SVM) model classification was used to predict HE. Our hybrid model exhibited a high AUC of 0.949, and 0.95 of precision, 0.83 of recall, and 0.94 of average precision (AP). The CM found that only 5 cases were misidentified by the model. CONCLUSION: The automatic hybrid model we developed is an end-to-end method and can assist in clinical decision-making, thereby facilitating personalized treatment for patients with ICH. |
format | Online Article Text |
id | pubmed-10423600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-104236002023-08-14 Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage Bo, Ruting Xiong, Zhi Huang, Ting Liu, Lingling Chen, Zhiqiang Int J Gen Med Original Research BACKGROUND: Hematoma enlargement (HE) is a common complication following acute intracerebral hemorrhage (ICH) and is associated with early deterioration and unfavorable clinical outcomes. This study aimed to evaluate the predictive performance of a computed tomography (CT) based model that utilizes deep learning features in identifying HE. METHODS: A total of 408 patients were retrospectively enrolled between January 2015 and December 2020 from our institution. We designed an automatic model that could mask the hematoma area and fusion features of radiomics, clinical data, and convolutional neural network (CNN) in a hybrid model. We assessed the model’s performance by using confusion matrix metrics (CM), the area under the receiver operating characteristics curve (AUC), and other statistical indicators. RESULTS: After automated masking, 408 patients were randomly divided into two cohorts with 204 patients in the training set and 204 patients in the validation set. The first cohort trained the CNN model, from which we then extracted radiomics, clinical data, and CNN features for the second validation cohort. After feature selection by K-highest score, a support vector machines (SVM) model classification was used to predict HE. Our hybrid model exhibited a high AUC of 0.949, and 0.95 of precision, 0.83 of recall, and 0.94 of average precision (AP). The CM found that only 5 cases were misidentified by the model. CONCLUSION: The automatic hybrid model we developed is an end-to-end method and can assist in clinical decision-making, thereby facilitating personalized treatment for patients with ICH. Dove 2023-08-09 /pmc/articles/PMC10423600/ /pubmed/37581173 http://dx.doi.org/10.2147/IJGM.S408725 Text en © 2023 Bo et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Bo, Ruting Xiong, Zhi Huang, Ting Liu, Lingling Chen, Zhiqiang Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage |
title | Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage |
title_full | Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage |
title_fullStr | Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage |
title_full_unstemmed | Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage |
title_short | Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage |
title_sort | using radiomics and convolutional neural networks for the prediction of hematoma expansion after intracerebral hemorrhage |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423600/ https://www.ncbi.nlm.nih.gov/pubmed/37581173 http://dx.doi.org/10.2147/IJGM.S408725 |
work_keys_str_mv | AT boruting usingradiomicsandconvolutionalneuralnetworksforthepredictionofhematomaexpansionafterintracerebralhemorrhage AT xiongzhi usingradiomicsandconvolutionalneuralnetworksforthepredictionofhematomaexpansionafterintracerebralhemorrhage AT huangting usingradiomicsandconvolutionalneuralnetworksforthepredictionofhematomaexpansionafterintracerebralhemorrhage AT liulingling usingradiomicsandconvolutionalneuralnetworksforthepredictionofhematomaexpansionafterintracerebralhemorrhage AT chenzhiqiang usingradiomicsandconvolutionalneuralnetworksforthepredictionofhematomaexpansionafterintracerebralhemorrhage |