Cargando…
A two-stage dominance-based surrogate-assisted evolution algorithm for high-dimensional expensive multi-objective optimization
In the past decades, surrogate-assisted evolutionary algorithms (SAEAs) have become one of the most popular methods to solve expensive multi-objective optimization problems (EMOPs). However, most existing methods focus on low-dimensional EMOPs because a large number of training samples are required...
Autores principales: | Yu, Mengjiao, Wang, Zheng, Dai, Rui, Chen, Zhongkui, Ye, Qianlin, Wang, Wanliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423721/ https://www.ncbi.nlm.nih.gov/pubmed/37574501 http://dx.doi.org/10.1038/s41598-023-40019-6 |
Ejemplares similares
-
A clustering-based competitive particle swarm optimization with grid ranking for multi-objective optimization problems
por: Ye, Qianlin, et al.
Publicado: (2023) -
Low-cost quasi-global optimization of expensive electromagnetic simulation models by inverse surrogates and response features
por: Koziel, Slawomir, et al.
Publicado: (2022) -
A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms
por: Díaz-Manríquez, Alan, et al.
Publicado: (2016) -
Expensive medicines: ensuring objective appraisal and equitable access
por: Hill, Suzanne R, et al.
Publicado: (2015) -
Printing of Three-Dimensional Heart Models—Is It Worth the Expense?
por: Anderson, Robert H., et al.
Publicado: (2020)