Cargando…
Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Bidirectional Long Short-Term Memory Networks
[Image: see text] Essential for understanding far-from-equilibrium processes, nonadiabatic (NA) molecular dynamics (MD) requires expensive calculations of the excitation energies and NA couplings. Machine learning (ML) can simplify computation; however, the NA Hamiltonian requires complex ML models...
Autores principales: | Wang, Bipeng, Winkler, Ludwig, Wu, Yifan, Müller, Klaus-Robert, Sauceda, Huziel E., Prezhdo, Oleg V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424239/ https://www.ncbi.nlm.nih.gov/pubmed/37530451 http://dx.doi.org/10.1021/acs.jpclett.3c01723 |
Ejemplares similares
-
Zeno and Anti-Zeno
Effects in Nonadiabatic Molecular
Dynamics
por: Gumber, Shriya, et al.
Publicado: (2023) -
Efficient Modeling
of Quantum Dynamics of Charge Carriers
in Materials Using Short Nonequilibrium Molecular Dynamics
por: Wang, Bipeng, et al.
Publicado: (2023) -
Analytical solution for nonadiabatic quantum annealing to arbitrary Ising spin Hamiltonian
por: Yan, Bin, et al.
Publicado: (2022) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Chmiela, Stefan, et al.
Publicado: (2018) -
Nonadiabatic dynamics: The SHARC approach
por: Mai, Sebastian, et al.
Publicado: (2018)