Cargando…

Unitary Coupled Cluster: Seizing the Quantum Moment

[Image: see text] Shallow, CNOT-efficient quantum circuits are crucial for performing accurate computational chemistry simulations on current noisy quantum hardware. Here, we explore the usefulness of noniterative energy corrections, based on the method of moments of coupled-cluster theory, for acce...

Descripción completa

Detalles Bibliográficos
Autores principales: Magoulas, Ilias, Evangelista, Francesco A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424243/
https://www.ncbi.nlm.nih.gov/pubmed/37523485
http://dx.doi.org/10.1021/acs.jpca.3c02781
_version_ 1785089632955793408
author Magoulas, Ilias
Evangelista, Francesco A.
author_facet Magoulas, Ilias
Evangelista, Francesco A.
author_sort Magoulas, Ilias
collection PubMed
description [Image: see text] Shallow, CNOT-efficient quantum circuits are crucial for performing accurate computational chemistry simulations on current noisy quantum hardware. Here, we explore the usefulness of noniterative energy corrections, based on the method of moments of coupled-cluster theory, for accelerating convergence toward full configuration interaction. Our preliminary numerical results relying on iteratively constructed ansätze suggest that chemically accurate energies can be obtained with substantially more compact circuits, implying enhanced resilience to gate and decoherence noise.
format Online
Article
Text
id pubmed-10424243
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104242432023-08-15 Unitary Coupled Cluster: Seizing the Quantum Moment Magoulas, Ilias Evangelista, Francesco A. J Phys Chem A [Image: see text] Shallow, CNOT-efficient quantum circuits are crucial for performing accurate computational chemistry simulations on current noisy quantum hardware. Here, we explore the usefulness of noniterative energy corrections, based on the method of moments of coupled-cluster theory, for accelerating convergence toward full configuration interaction. Our preliminary numerical results relying on iteratively constructed ansätze suggest that chemically accurate energies can be obtained with substantially more compact circuits, implying enhanced resilience to gate and decoherence noise. American Chemical Society 2023-07-31 /pmc/articles/PMC10424243/ /pubmed/37523485 http://dx.doi.org/10.1021/acs.jpca.3c02781 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Magoulas, Ilias
Evangelista, Francesco A.
Unitary Coupled Cluster: Seizing the Quantum Moment
title Unitary Coupled Cluster: Seizing the Quantum Moment
title_full Unitary Coupled Cluster: Seizing the Quantum Moment
title_fullStr Unitary Coupled Cluster: Seizing the Quantum Moment
title_full_unstemmed Unitary Coupled Cluster: Seizing the Quantum Moment
title_short Unitary Coupled Cluster: Seizing the Quantum Moment
title_sort unitary coupled cluster: seizing the quantum moment
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424243/
https://www.ncbi.nlm.nih.gov/pubmed/37523485
http://dx.doi.org/10.1021/acs.jpca.3c02781
work_keys_str_mv AT magoulasilias unitarycoupledclusterseizingthequantummoment
AT evangelistafrancescoa unitarycoupledclusterseizingthequantummoment