Cargando…
Interpretability of radiomics models is improved when using feature group selection strategies for predicting molecular and clinical targets in clear-cell renal cell carcinoma: insights from the TRACERx Renal study
BACKGROUND: The aim of this work is to evaluate the performance of radiomics predictions for a range of molecular, genomic and clinical targets in patients with clear cell renal cell carcinoma (ccRCC) and demonstrate the impact of novel feature selection strategies and sub-segmentations on model int...
Autores principales: | Orton, Matthew R., Hann, Evan, Doran, Simon J., Shepherd, Scott T. C., Ap Dafydd, Derfel, Spencer, Charlotte E., López, José I., Albarrán-Artahona, Víctor, Comito, Francesca, Warren, Hannah, Shur, Joshua, Messiou, Christina, Larkin, James, Turajlic, Samra, Koh, Dow-Mu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424427/ https://www.ncbi.nlm.nih.gov/pubmed/37580840 http://dx.doi.org/10.1186/s40644-023-00594-3 |
Ejemplares similares
-
Spatial patterns of tumour growth impact clonal diversification in a computational model and the TRACERx Renal study
por: Fu, Xiao, et al.
Publicado: (2021) -
Radiomics in Oncology: A Practical Guide
por: Shur, Joshua D., et al.
Publicado: (2021) -
Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal
por: Mitchell, Thomas J., et al.
Publicado: (2018) -
Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal
por: Turajlic, Samra, et al.
Publicado: (2018) -
Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal
por: Turajlic, Samra, et al.
Publicado: (2018)