Cargando…
The effect of selected rest break activities on reaction time, balance, and perceived discomfort after one hour of simulated occupational whole-body vibration exposure in healthy adults
Background & Objective: Negative health effects from occupational whole-body vibration (WBV) exposure during machinery operation include alterations in proprioception, vestibular function, reaction time, stress, motor response, and decrements in musculoskeletal health. To reduce WBV exposure dur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424600/ https://www.ncbi.nlm.nih.gov/pubmed/37572647 http://dx.doi.org/10.1080/07853890.2023.2244965 |
Sumario: | Background & Objective: Negative health effects from occupational whole-body vibration (WBV) exposure during machinery operation include alterations in proprioception, vestibular function, reaction time, stress, motor response, and decrements in musculoskeletal health. To reduce WBV exposure during machinery operation, it may be possible to incorporate short rest break activities throughout the day. This study aims to determine if there are intervention activities that can minimize decrements in cognitive, proprioceptive, and musculoskeletal effects related to WBV exposure during machine operation. MATERIALS & METHODS: Eleven healthy adults participated in four 1-hour sessions of ecologically valid WBV exposure followed by one of four 5-minute activities: sitting, walking, 2 min of gaze stabilization exercise (GSE) coupled with 3 min of trunk mobility exercise (GSE + MOBIL), or 2 min of GSE coupled with a 3-minute walk (GSE + WALK). Baseline and post-activity measurements (rating of perceived discomfort, balance and postural sway measurements, 5-minute psychomotor vigilance task test) were submitted to a paired t-test to determine the effect of WBV exposure and activities on physical, cognitive, and sensorimotor systems and to a repeated measures ANOVA to determine any differences across activities. RESULTS: We observed degradation of the slowest 10% reaction speed outcomes between baseline and post-activity after walking (7.3%, p < 0.05) and sitting (8.6%, p < 0.05) but not after GSE + MOBIL or GSE + WALK activities. Slowest 10% reaction speed after GSE + MOBIL activity was faster than all other activities. The rating of perceived discomfort was higher after SIT and WALK activities. There were no notable differences in balance outcomes. CONCLUSION: When compared to sitting for 5 min, an activity including GSE and an active component, such as walking or trunk mobility exercises, resulted in maintenance of reaction time after WBV exposure. If confirmed in occupational environments, GSE may provide a simple, rapid, effective, and inexpensive means to protect against decrements in reaction time after WBV exposure. |
---|