Cargando…

Application of referenced thermodynamic integration to Bayesian model selection

Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochasti...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawryluk, Iwona, Mishra, Swapnil, Flaxman, Seth, Bhatt, Samir, Mellan, Thomas A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424863/
https://www.ncbi.nlm.nih.gov/pubmed/37578987
http://dx.doi.org/10.1371/journal.pone.0289889
Descripción
Sumario:Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a simple but under-appreciated variation of the TI method, here referred to as referenced TI, which computes a single model’s normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with pedagogical 1 and 2D examples. The approach is shown to be useful in practice when applied to a real problem —to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density.