Cargando…

Multi-channel feature fusion attention Dehazing network

Haze is a typical weather phenomena that has a significant negative impact on transportation safety, particularly in the port, highways, and airport runway areas. A multi-scale U-shaped dehazing network is proposed in this research, which is based on our multi-channel feature fusion attention struct...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Changjun, Xu, Hangbin, Ye, Lintao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424867/
https://www.ncbi.nlm.nih.gov/pubmed/37578956
http://dx.doi.org/10.1371/journal.pone.0286711
Descripción
Sumario:Haze is a typical weather phenomena that has a significant negative impact on transportation safety, particularly in the port, highways, and airport runway areas. A multi-scale U-shaped dehazing network is proposed in this research, which is based on our multi-channel feature fusion attention structure. With the help of the feature fusion attention techniques, the model can focus on the intriguing locations with higher haze concentration area. In conjunction with UNet, it can achieve multi-scale feature reuse and residual learning, allowing it to fully utilize the feature information of each layer for image restoration. Experimental resulsts show that our technique performs well on a variety of test datasets. On highway data sets, the PSNR / SSIM / L(∞) error performance over the novel technique is increased by 0.52% / 0.5% / 30.84%, 4.68% / 0.78% / 26.19% and 13.84% / 9.05% / 55.57% respectively, when compared to DehazeFormer, MIRNetv2, and FSDGN methods. The findings suggest that our proposed method performs better on image dehazing, especially in terms of L(∞) error performance.