Cargando…
Identification of fibroblast-related genes based on single-cell and machine learning to predict the prognosis and endocrine metabolism of pancreatic cancer
BACKGROUND: Single-cell sequencing technology has become an indispensable tool in tumor mechanism and heterogeneity studies. Pancreatic adenocarcinoma (PAAD) lacks early specific symptoms, and comprehensive bioinformatics analysis for PAAD contributes to the developmental mechanisms. METHODS: We per...
Autores principales: | Xu, Yinghua, Chen, Xionghuan, Liu, Nan, Chu, Zhong, Wang, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425556/ https://www.ncbi.nlm.nih.gov/pubmed/37588985 http://dx.doi.org/10.3389/fendo.2023.1201755 |
Ejemplares similares
-
Identification of markers for predicting prognosis and endocrine metabolism in nasopharyngeal carcinoma by miRNA–mRNA network mining and machine learning
por: Zhang, Xixia, et al.
Publicado: (2023) -
Endocrine regulation and metabolic mechanisms of osteopontin in the development and progression of osteosarcoma, metastasis and prognosis
por: Shao, Zhuce, et al.
Publicado: (2023) -
Identification of glycolysis genes signature for predicting prognosis in malignant pleural mesothelioma by bioinformatics and machine learning
por: Xiao, Yingqi, et al.
Publicado: (2022) -
Editorial: Mechanistic, machine learning and hybrid models of the “other” endocrine regulatory systems in health & disease
por: DiStefano, Joseph, et al.
Publicado: (2023) -
Editorial: Endocrine Disrupters and Metabolism
por: Gibert, Yann, et al.
Publicado: (2019)