Cargando…
Identification of herbarium specimen sheet components from high‐resolution images using deep learning
Advanced computer vision techniques hold the potential to mobilise vast quantities of biodiversity data by facilitating the rapid extraction of text‐ and trait‐based data from herbarium specimen digital images, and to increase the efficiency and accuracy of downstream data capture during digitisatio...
Autores principales: | Thompson, Karen M., Turnbull, Robert, Fitzgerald, Emily, Birch, Joanne L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425611/ https://www.ncbi.nlm.nih.gov/pubmed/37589042 http://dx.doi.org/10.1002/ece3.10395 |
Ejemplares similares
-
Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification
por: Unger, Jakob, et al.
Publicado: (2016) -
Going deeper in the automated identification of Herbarium specimens
por: Carranza-Rojas, Jose, et al.
Publicado: (2017) -
Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation
por: Hussein, Burhan Rashid, et al.
Publicado: (2021) -
An algorithm competition for automatic species identification from herbarium specimens
por: Little, Damon P., et al.
Publicado: (2020) -
Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research
por: Pearson, Katelin D, et al.
Publicado: (2020)