Cargando…
Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region
Understanding of Aerosol optical depth (AOD) parameter is important for air quality assessment. This study aims to evaluate and validate AOD measurements from combine datasets to improve air quality for a period 2005–2020 using Aerosol Robotic Network (AERONET) at Ilorin site (8.320° N, 4.340° E) in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425909/ https://www.ncbi.nlm.nih.gov/pubmed/37588611 http://dx.doi.org/10.1016/j.heliyon.2023.e18815 |
_version_ | 1785089941400715264 |
---|---|
author | Yusuf, Najib Sa'id, Rabia S. |
author_facet | Yusuf, Najib Sa'id, Rabia S. |
author_sort | Yusuf, Najib |
collection | PubMed |
description | Understanding of Aerosol optical depth (AOD) parameter is important for air quality assessment. This study aims to evaluate and validate AOD measurements from combine datasets to improve air quality for a period 2005–2020 using Aerosol Robotic Network (AERONET) at Ilorin site (8.320° N, 4.340° E) in Nigeria. AOD outputs from Community Atmosphere Model Version 6 with chemistry (CAM6-chem) at 1° horizontal resolution and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are investigated in addition to validation of two satellites AOD retrievals: Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR). Result of spatial distribution of AOD shows high values > 1 in the North and Western Sahara compared to Central Africa. Desert dust shows largest contribution in the North and Western Africa that is up to 2 magnitude larger than other aerosol types. Primary organic matter (POM) and secondary organic aerosols (SOAs) both presents high burdens with later been dominant at around 10° band, and black carbon (BC) largest burden (2.6 × 10 − (5) kgm − (2)) is seen in the model from oil and gas exploration site in Nigeria. Inter-comparison of MERRA/MISR/MODIS and AERONET AOD using linear correlation of the seasonal dependence demonstrated high correlation (r = 0.864 − 0.973) subjected to Root Mean Square Error (RMSE = 0.069 − 0.211), suggesting good agreement between the datasets. When compared to seasonal mean maximum AERONET AOD value of 0.978 MERRA is ∼5%, MISR ∼28% and MODIS ∼29% lower with stronger correlations observed in the wet and pre-harmattan seasons. Similarly, MODEL AOD at 550 nm and dust burden were found to be ∼34% and ∼67% lower in context to AERONET AOD annual mean value of 0.627. Positive relationships that indicate an upward slope exist between all the computed datasets with moderate value of AERONET/CAM-chem spearman partial correlation, and MERRA/MODIS and MODIS/MISR showing strong and significant relationship with p-value less than 0.05. Low variance is observed with all measurements except in MERRA. |
format | Online Article Text |
id | pubmed-10425909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104259092023-08-16 Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region Yusuf, Najib Sa'id, Rabia S. Heliyon Research Article Understanding of Aerosol optical depth (AOD) parameter is important for air quality assessment. This study aims to evaluate and validate AOD measurements from combine datasets to improve air quality for a period 2005–2020 using Aerosol Robotic Network (AERONET) at Ilorin site (8.320° N, 4.340° E) in Nigeria. AOD outputs from Community Atmosphere Model Version 6 with chemistry (CAM6-chem) at 1° horizontal resolution and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are investigated in addition to validation of two satellites AOD retrievals: Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR). Result of spatial distribution of AOD shows high values > 1 in the North and Western Sahara compared to Central Africa. Desert dust shows largest contribution in the North and Western Africa that is up to 2 magnitude larger than other aerosol types. Primary organic matter (POM) and secondary organic aerosols (SOAs) both presents high burdens with later been dominant at around 10° band, and black carbon (BC) largest burden (2.6 × 10 − (5) kgm − (2)) is seen in the model from oil and gas exploration site in Nigeria. Inter-comparison of MERRA/MISR/MODIS and AERONET AOD using linear correlation of the seasonal dependence demonstrated high correlation (r = 0.864 − 0.973) subjected to Root Mean Square Error (RMSE = 0.069 − 0.211), suggesting good agreement between the datasets. When compared to seasonal mean maximum AERONET AOD value of 0.978 MERRA is ∼5%, MISR ∼28% and MODIS ∼29% lower with stronger correlations observed in the wet and pre-harmattan seasons. Similarly, MODEL AOD at 550 nm and dust burden were found to be ∼34% and ∼67% lower in context to AERONET AOD annual mean value of 0.627. Positive relationships that indicate an upward slope exist between all the computed datasets with moderate value of AERONET/CAM-chem spearman partial correlation, and MERRA/MODIS and MODIS/MISR showing strong and significant relationship with p-value less than 0.05. Low variance is observed with all measurements except in MERRA. Elsevier 2023-08-03 /pmc/articles/PMC10425909/ /pubmed/37588611 http://dx.doi.org/10.1016/j.heliyon.2023.e18815 Text en © 2023 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Yusuf, Najib Sa'id, Rabia S. Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region |
title | Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region |
title_full | Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region |
title_fullStr | Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region |
title_full_unstemmed | Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region |
title_short | Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region |
title_sort | spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425909/ https://www.ncbi.nlm.nih.gov/pubmed/37588611 http://dx.doi.org/10.1016/j.heliyon.2023.e18815 |
work_keys_str_mv | AT yusufnajib spatialdistributionofaerosolsburdenandevaluationofchangesinaerosolopticaldepthusingmultiapproachobservationsintropicalregion AT saidrabias spatialdistributionofaerosolsburdenandevaluationofchangesinaerosolopticaldepthusingmultiapproachobservationsintropicalregion |