Cargando…

Edible Origami Actuators Using Gelatin-Based Bioplastics

[Image: see text] The potential of ingestible medical devices can be greatly enhanced through the use of smart structures made from stimuli-responsive materials. While hydration is a convenient stimulus for inducing shape changes in biomaterials, finding robust materials that can achieve rapid actua...

Descripción completa

Detalles Bibliográficos
Autores principales: Matonis, Spencer J., Zhuang, Bozhong, Bishop, Ailla F., Naik, Durva A., Temel, Zeynep, Bettinger, Christopher J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425958/
https://www.ncbi.nlm.nih.gov/pubmed/37588084
http://dx.doi.org/10.1021/acsapm.3c00919
Descripción
Sumario:[Image: see text] The potential of ingestible medical devices can be greatly enhanced through the use of smart structures made from stimuli-responsive materials. While hydration is a convenient stimulus for inducing shape changes in biomaterials, finding robust materials that can achieve rapid actuation, facile manufacturability, and biocompatibility suitable for ingestible medical devices poses practical challenges. Hydration is a convenient stimulus to induce shape changes in smart biomaterials; however, there are many practical challenges to identifying materials that can achieve rapid actuation and facile manufacturability while satisfying constraints associated with biocompatibility requirements and mechanical properties that are suitable for ingestible medical devices. Herein, we illustrate the formulation and processability of a moisture-responsive genipin-crosslinked gelatin bioplastic system, which can be processed into complex three-dimensional shapes. Mechanical characterization of bioplastic samples showed Young’s Modulus values as high as 1845 MPa and toughness values up to 52 MJ/m(3), using only food-safe ingredients. Custom molds and UV-laser processing enabled the fabrication of centimeter-scale structures with over 150 independent actuating joints. These self-actuating structures soften and unfold in response to surrounding moisture, eliminating the need for additional stimuli or actuating elements.