Cargando…
Sub-Liquid and Atmospheric Measurement Instrument To Autonomously Monitor the Biochemistry of Natural Aquatic Ecosystems
[Image: see text] Monitoring the biochemistry of aquatic ecosystems is critical to understanding the biogeochemical cycling induced by microorganisms. They play a vital role in climate-gaseous drivers associated with natural ecosystems, such as methane emission in wetlands and peatlands; gas cycling...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425959/ https://www.ncbi.nlm.nih.gov/pubmed/37588808 http://dx.doi.org/10.1021/acsestwater.3c00082 |
Sumario: | [Image: see text] Monitoring the biochemistry of aquatic ecosystems is critical to understanding the biogeochemical cycling induced by microorganisms. They play a vital role in climate-gaseous drivers associated with natural ecosystems, such as methane emission in wetlands and peatlands; gas cycling and fixation: methane, sulfur, carbon, and nitrogen; water quality assessment and remediation; monitoring oxygen saturation due to contamination and algal proliferation; and many more. Microorganisms interact with these environments inducing diurnal and seasonal changes that have been, to date, poorly characterized. To aid with the long-term in-situ monitoring of natural aquatic ecosystems, we designed a Sub-liquid and Atmospheric Measurement (SAM) instrument. This floating platform can autonomously measure various sub-liquid and atmospheric parameters over a long time. This paper describes the design of SAM and illustrates how its long-term operation can produce critical information to complement other standard laboratory-based microbiological studies. |
---|