Cargando…

Cross-platform comparisons for targeted bisulfite sequencing of MGISEQ-2000 and NovaSeq6000

BACKGROUND: An accurate and reproducible next-generation sequencing platform is essential to identify malignancy-related abnormal DNA methylation changes and translate them into clinical applications including cancer detection, prognosis, and surveillance. However, high-quality DNA methylation seque...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Jin, Su, Mingyang, Ma, Jianhua, Xu, Minjie, Ma, Chengcheng, Li, Wei, Liu, Rui, He, Qiye, Su, Zhixi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426093/
https://www.ncbi.nlm.nih.gov/pubmed/37582783
http://dx.doi.org/10.1186/s13148-023-01543-4
Descripción
Sumario:BACKGROUND: An accurate and reproducible next-generation sequencing platform is essential to identify malignancy-related abnormal DNA methylation changes and translate them into clinical applications including cancer detection, prognosis, and surveillance. However, high-quality DNA methylation sequencing has been challenging because poor sequence diversity of the bisulfite-converted libraries severely impairs sequencing quality and yield. In this study, we tested MGISEQ-2000 Sequencer’s capability of DNA methylation sequencing with a published non-invasive pancreatic cancer detection assay, using NovaSeq6000 as the benchmark. RESULTS: We sequenced a series of synthetic cell-free DNA (cfDNA) samples with different tumor fractions and found MGISEQ-2000 yielded data with similar quality as NovaSeq6000. The methylation levels measured by MGISEQ-2000 demonstrated high consistency with NovaSeq6000. Moreover, MGISEQ-2000 showed a comparable analytic sensitivity with NovaSeq6000, suggesting its potential for clinical detection. As to evaluate the clinical performance of MGISEQ-2000, we sequenced 24 clinical samples and predicted the pathology of the samples with a clinical diagnosis model, PDACatch classifier. The clinical model performance of MGISEQ-2000’s data was highly consistent with that of NovaSeq6000’s data, with the area under the curve of 1. We also tested the model’s robustness with MGISEQ-2000’s data when reducing the sequencing depth. The results showed that MGISEQ-2000’s data showed matching robustness of the PDACatch classifier with NovaSeq6000’s data. CONCLUSIONS: Taken together, MGISEQ-2000 demonstrated similar data quality, consistency of the methylation levels, comparable analytic sensitivity, and matching clinical performance, supporting its application in future non-invasive early cancer detection investigations by detecting distinct methylation patterns of cfDNAs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13148-023-01543-4.