Cargando…
Predicting the impact of sequence motifs on gene regulation using single-cell data
The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory...
Autores principales: | Hepkema, Jacob, Lee, Nicholas Keone, Stewart, Benjamin J., Ruangroengkulrith, Siwat, Charoensawan, Varodom, Clatworthy, Menna R., Hemberg, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426127/ https://www.ncbi.nlm.nih.gov/pubmed/37582793 http://dx.doi.org/10.1186/s13059-023-03021-9 |
Ejemplares similares
-
Uncovering the interplay between DNA sequence preferences of transcription factors and nucleosomes
por: Teichmann, Sarah A., et al.
Publicado: (2012) -
MotViz: A Tool for Sequence Motif Prediction in Parallel to Structural Visualization and Analyses
por: Nawaz, Muhammad Sulaman, et al.
Publicado: (2012) -
Large-scale comparative transcriptomic analysis of temperature-responsive genes in Arabidopsis thaliana
por: Sriden, Napaporn, et al.
Publicado: (2022) -
Applying single‐cell technologies to clinical pathology: progress in nephropathology
por: Stewart, Benjamin J, et al.
Publicado: (2020) -
Accurate sequencing of DNA motifs able to form alternative (non-B) structures
por: Weissensteiner, Matthias H., et al.
Publicado: (2023)