Cargando…
Multi-domain knowledge graph embeddings for gene-disease association prediction
BACKGROUND: Predicting gene-disease associations typically requires exploring diverse sources of information as well as sophisticated computational approaches. Knowledge graph embeddings can help tackle these challenges by creating representations of genes and diseases based on the scientific knowle...
Autores principales: | Nunes, Susana, Sousa, Rita T., Pesquita, Catia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426189/ https://www.ncbi.nlm.nih.gov/pubmed/37580835 http://dx.doi.org/10.1186/s13326-023-00291-x |
Ejemplares similares
-
Knowledge Graph Embeddings for ICU readmission prediction
por: Carvalho, Ricardo M. S., et al.
Publicado: (2023) -
Evolving knowledge graph similarity for supervised learning in complex biomedical domains
por: Sousa, Rita T., et al.
Publicado: (2020) -
A Collection of Benchmark Data Sets for Knowledge Graph-based Similarity in the Biomedical Domain
por: Cardoso, Carlota, et al.
Publicado: (2020) -
Ontologies and Knowledge Graphs in Oncology Research
por: Silva, Marta Contreiras, et al.
Publicado: (2022) -
Convolutional Models with Multi-Feature Fusion for Effective Link Prediction in Knowledge Graph Embedding
por: Guo, Qinglang, et al.
Publicado: (2023)