Cargando…

Trend analysis of malaria in urban settings in Ethiopia from 2014 to 2019

BACKGROUND: Urbanization generally improves health outcomes of residents and is one of the potential factors that might contribute to reducing malaria transmission. However, the expansion of Anopheles stephensi, an urban malaria vector, poses a threat for malaria control and elimination efforts in A...

Descripción completa

Detalles Bibliográficos
Autores principales: Teka, Hiwot, Golassa, Lemu, Medhin, Girmay, Balkew, Meshesha, Sisay, Chalachew, Gadisa, Endalamaw, Nekorchuk, Dawn M., Wimberly, Michael C., Tadesse, Fitsum Girma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426206/
https://www.ncbi.nlm.nih.gov/pubmed/37580690
http://dx.doi.org/10.1186/s12936-023-04656-6
Descripción
Sumario:BACKGROUND: Urbanization generally improves health outcomes of residents and is one of the potential factors that might contribute to reducing malaria transmission. However, the expansion of Anopheles stephensi, an urban malaria vector, poses a threat for malaria control and elimination efforts in Africa. In this paper, malaria trends in urban settings in Ethiopia from 2014 to 2019 are reported with a focus on towns and cities where An. stephensi surveys were conducted. METHODS: A retrospective study was conducted to determine malaria trends in urban districts using passive surveillance data collected at health facilities from 2014 to 2019. Data from 25 towns surveyed for An. stephensi were used in malaria trend analysis. Robust linear models were used to identify outliers and impute missing and anomalous data. The seasonal Mann-Kendal test was used to test for monotonic increasing or decreasing trends. RESULTS: A total of 9,468,970 malaria cases were reported between 2014 and 2019 through the Public Health Emergency Management (PHEM) system. Of these, 1.45 million (15.3%) cases were reported from urban settings. The incidence of malaria declined by 62% between 2014 and 2018. In 2019, the incidence increased to 15 per 1000 population from 11 to 1000 in 2018. Both confirmed (microscopy or RDT) Plasmodium falciparum (67%) and Plasmodium vivax (28%) were reported with a higher proportion of P. vivax infections in urban areas. In 2019, An. stephensi was detected in 17 towns where more than 19,804 malaria cases were reported, with most of the cases (56%) being P. falciparum. Trend analysis revealed that malaria cases increased in five towns in Afar and Somali administrative regions, decreased in nine towns, and had no obvious trend in the remaining three towns. CONCLUSION: The contribution of malaria in urban settings is not negligible in Ethiopia. With the rapid expansion of An. stephensi in the country, the receptivity is likely to be higher for malaria. Although the evidence presented in this study does not demonstrate a direct linkage between An. stephensi detection and an increase in urban malaria throughout the country, An. stephensi might contribute to an increase in malaria unless control measures are implemented as soon as possible. Targeted surveillance and effective response are needed to assess the contribution of this vector to malaria transmission and curb potential outbreaks.