Cargando…
Evaluating point-prediction uncertainties in neural networks for protein-ligand binding prediction
Neural Network (NN) models provide potential to speed up the drug discovery process and reduce its failure rates. The success of NN models requires uncertainty quantification (UQ) as drug discovery explores chemical space beyond the training data distribution. Standard NN models do not provide uncer...
Autores principales: | Fan, Ya Ju, Allen, Jonathan E., McLoughlin, Kevin S., Shi, Da, Bennion, Brian J., Zhang, Xiaohua, Lightstone, Felice C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426331/ https://www.ncbi.nlm.nih.gov/pubmed/37583465 http://dx.doi.org/10.1016/j.aichem.2023.100004 |
Ejemplares similares
-
A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin
por: Zhang, Xiaohua, et al.
Publicado: (2017) -
Adverse Drug Reaction Prediction Using Scores Produced by Large-Scale Drug-Protein Target Docking on High-Performance Computing Machines
por: LaBute, Montiago X., et al.
Publicado: (2014) -
Clustering Protein
Binding Pockets and Identifying
Potential Drug Interactions: A Novel Ligand-Based Featurization Method
por: Stevenson, Garrett A., et al.
Publicado: (2023) -
Uncertainty Characterisation of Mobile Robot Localisation Techniques using Optical Surveying Grade Instruments
por: McLoughlin, Benjamin J., et al.
Publicado: (2018) -
Uncertainty quantification for predictions of atomistic neural networks
por: Vazquez-Salazar, Luis Itza, et al.
Publicado: (2022)