Cargando…
Impact of multi-source data augmentation on performance of convolutional neural networks for abnormality classification in mammography
INTRODUCTION: To date, most mammography-related AI models have been trained using either film or digital mammogram datasets with little overlap. We investigated whether or not combining film and digital mammography during training will help or hinder modern models designed for use on digital mammogr...
Autores principales: | Hwang, InChan, Trivedi, Hari, Brown-Mulry, Beatrice, Zhang, Linglin, Nalla, Vineela, Gastounioti, Aimilia, Gichoya, Judy, Seyyed-Kalantari, Laleh, Banerjee, Imon, Woo, MinJae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426498/ https://www.ncbi.nlm.nih.gov/pubmed/37588666 http://dx.doi.org/10.3389/fradi.2023.1181190 |
Ejemplares similares
-
AI pitfalls and what not to do: mitigating bias in AI
por: Gichoya, Judy Wawira, et al.
Publicado: (2023) -
Automatic Classification of Cancer Pathology Reports: A Systematic Review
por: Santos, Thiago, et al.
Publicado: (2022) -
Query bot for retrieving patients’ clinical history: A COVID-19 use-case
por: Wang, Yibo, et al.
Publicado: (2021) -
PATIENT-SPECIFIC COVID-19 RESOURCE UTILIZATION PREDICTION USING FUSION AI MODEL
por: Tariq, Amara, et al.
Publicado: (2021) -
Can Magnetic Resonance Imaging Replace Mammography and Ultrasonography for the Detection of Breast Lesions?
por: Yilmaz, Yeliz, et al.
Publicado: (2020)