Cargando…
Incorporating structural plasticity into self-organization recurrent networks for sequence learning
INTRODUCTION: Spiking neural networks (SNNs), inspired by biological neural networks, have received a surge of interest due to its temporal encoding. Biological neural networks are driven by multiple plasticities, including spike timing-dependent plasticity (STDP), structural plasticity, and homeost...
Autores principales: | Yuan, Ye, Zhu, Yongtong, Wang, Jiaqi, Li, Ruoshi, Xu, Xin, Fang, Tao, Huo, Hong, Wan, Lihong, Li, Qingdu, Liu, Na, Yang, Shiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427342/ https://www.ncbi.nlm.nih.gov/pubmed/37592946 http://dx.doi.org/10.3389/fnins.2023.1224752 |
Ejemplares similares
-
Interactive Natural Language Grounding via Referring Expression Comprehension and Scene Graph Parsing
por: Mi, Jinpeng, et al.
Publicado: (2020) -
Homeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses
por: Matsubara, Takashi, et al.
Publicado: (2016) -
SORN: A Self-Organizing Recurrent Neural Network
por: Lazar, Andreea, et al.
Publicado: (2009) -
Intention-Related Natural Language Grounding via Object Affordance Detection and Intention Semantic Extraction
por: Mi, Jinpeng, et al.
Publicado: (2020) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017)