Cargando…
Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes
Membrane proteins are encoded by approximately a quarter of human genes. Inter-chain residue-residue contact information is important for structure prediction of membrane protein complexes and valuable for understanding their molecular mechanism. Although many deep learning methods have been propose...
Autores principales: | Lin, Peicong, Yan, Yumeng, Tao, Huanyu, Huang, Sheng-You |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427616/ https://www.ncbi.nlm.nih.gov/pubmed/37582780 http://dx.doi.org/10.1038/s41467-023-40426-3 |
Ejemplares similares
-
Accurate prediction of inter-protein residue–residue contacts for homo-oligomeric protein complexes
por: Yan, Yumeng, et al.
Publicado: (2021) -
ComplexContact: a web server for inter-protein contact prediction using deep learning
por: Zeng, Hong, et al.
Publicado: (2018) -
DeepComplex: A Web Server of Predicting Protein Complex Structures by Deep Learning Inter-chain Contact Prediction and Distance-Based Modelling
por: Quadir, Farhan, et al.
Publicado: (2021) -
Improving the topology prediction of α-helical transmembrane proteins with deep transfer learning
por: Wang, Lei, et al.
Publicado: (2022) -
Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly
por: He, Jiahua, et al.
Publicado: (2022)