Cargando…
Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen
The timing, sequence, and scale of uplift of the Himalayan–Tibetan Orogen (HTO) are controversially debated. Many geoscientific studies assume paleoelevations close to present-day elevations and the existence of alpine environments across the HTO already in the late Paleogene, contradicting fossil d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427656/ https://www.ncbi.nlm.nih.gov/pubmed/37582802 http://dx.doi.org/10.1038/s41598-023-38999-6 |
_version_ | 1785090288564305920 |
---|---|
author | Schmidt, Joachim Opgenoorth, Lars Mao, Kangshan Baniya, Chitra B. Hofmann, Sylvia |
author_facet | Schmidt, Joachim Opgenoorth, Lars Mao, Kangshan Baniya, Chitra B. Hofmann, Sylvia |
author_sort | Schmidt, Joachim |
collection | PubMed |
description | The timing, sequence, and scale of uplift of the Himalayan–Tibetan Orogen (HTO) are controversially debated. Many geoscientific studies assume paleoelevations close to present-day elevations and the existence of alpine environments across the HTO already in the late Paleogene, contradicting fossil data. Using molecular genetic data of ground beetles, we aim to reconstruct the paleoenvironmental history of the HTO, focusing on its southern margin (Himalayas, South Tibet). Based on a comprehensive sampling of extratropical Carabus, and ~ 10,000 bp of mitochondrial and nuclear DNA we applied Bayesian and Maximum likelihood methods to infer the phylogenetic relationships. We show that Carabus arrived in the HTO at the Oligocene–Miocene boundary. During the early Miocene, five lineages diversified in different parts of the HTO, initially in its southern center and on its eastern margin. Evolution of alpine taxa occurred during the late Miocene. There were apparently no habitats for Carabus before the late Oligocene. Until the Late Oligocene elevations must have been low throughout the HTO. Temperate forests emerged in South Tibet in the late Oligocene at the earliest. Alpine environments developed in the HTO from the late Miocene and, in large scale, during the Pliocene–Quaternary. Findings are consistent with fossil records but contrast with uplift models recovered from stable isotope paleoaltimetry. |
format | Online Article Text |
id | pubmed-10427656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104276562023-08-17 Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen Schmidt, Joachim Opgenoorth, Lars Mao, Kangshan Baniya, Chitra B. Hofmann, Sylvia Sci Rep Article The timing, sequence, and scale of uplift of the Himalayan–Tibetan Orogen (HTO) are controversially debated. Many geoscientific studies assume paleoelevations close to present-day elevations and the existence of alpine environments across the HTO already in the late Paleogene, contradicting fossil data. Using molecular genetic data of ground beetles, we aim to reconstruct the paleoenvironmental history of the HTO, focusing on its southern margin (Himalayas, South Tibet). Based on a comprehensive sampling of extratropical Carabus, and ~ 10,000 bp of mitochondrial and nuclear DNA we applied Bayesian and Maximum likelihood methods to infer the phylogenetic relationships. We show that Carabus arrived in the HTO at the Oligocene–Miocene boundary. During the early Miocene, five lineages diversified in different parts of the HTO, initially in its southern center and on its eastern margin. Evolution of alpine taxa occurred during the late Miocene. There were apparently no habitats for Carabus before the late Oligocene. Until the Late Oligocene elevations must have been low throughout the HTO. Temperate forests emerged in South Tibet in the late Oligocene at the earliest. Alpine environments developed in the HTO from the late Miocene and, in large scale, during the Pliocene–Quaternary. Findings are consistent with fossil records but contrast with uplift models recovered from stable isotope paleoaltimetry. Nature Publishing Group UK 2023-08-15 /pmc/articles/PMC10427656/ /pubmed/37582802 http://dx.doi.org/10.1038/s41598-023-38999-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Schmidt, Joachim Opgenoorth, Lars Mao, Kangshan Baniya, Chitra B. Hofmann, Sylvia Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen |
title | Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen |
title_full | Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen |
title_fullStr | Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen |
title_full_unstemmed | Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen |
title_short | Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan–Tibetan Orogen |
title_sort | molecular phylogeny of mega-diverse carabus attests late miocene evolution of alpine environments in the himalayan–tibetan orogen |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427656/ https://www.ncbi.nlm.nih.gov/pubmed/37582802 http://dx.doi.org/10.1038/s41598-023-38999-6 |
work_keys_str_mv | AT schmidtjoachim molecularphylogenyofmegadiversecarabusattestslatemioceneevolutionofalpineenvironmentsinthehimalayantibetanorogen AT opgenoorthlars molecularphylogenyofmegadiversecarabusattestslatemioceneevolutionofalpineenvironmentsinthehimalayantibetanorogen AT maokangshan molecularphylogenyofmegadiversecarabusattestslatemioceneevolutionofalpineenvironmentsinthehimalayantibetanorogen AT baniyachitrab molecularphylogenyofmegadiversecarabusattestslatemioceneevolutionofalpineenvironmentsinthehimalayantibetanorogen AT hofmannsylvia molecularphylogenyofmegadiversecarabusattestslatemioceneevolutionofalpineenvironmentsinthehimalayantibetanorogen |