Cargando…

Data-driven predictions of complex organic mixture permeation in polymer membranes

Membrane-based organic solvent separations are rapidly emerging as a promising class of technologies for enhancing the energy efficiency of existing separation and purification systems. Polymeric membranes have shown promise in the fractionation or splitting of complex mixtures of organic molecules...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Young Joo, Chen, Lihua, Nistane, Janhavi, Jang, Hye Youn, Weber, Dylan J., Scott, Joseph K., Rangnekar, Neel D., Marshall, Bennett D., Li, Wenjun, Johnson, J. R., Bruno, Nicholas C., Finn, M. G., Ramprasad, Rampi, Lively, Ryan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427679/
https://www.ncbi.nlm.nih.gov/pubmed/37582784
http://dx.doi.org/10.1038/s41467-023-40257-2
_version_ 1785090294230810624
author Lee, Young Joo
Chen, Lihua
Nistane, Janhavi
Jang, Hye Youn
Weber, Dylan J.
Scott, Joseph K.
Rangnekar, Neel D.
Marshall, Bennett D.
Li, Wenjun
Johnson, J. R.
Bruno, Nicholas C.
Finn, M. G.
Ramprasad, Rampi
Lively, Ryan P.
author_facet Lee, Young Joo
Chen, Lihua
Nistane, Janhavi
Jang, Hye Youn
Weber, Dylan J.
Scott, Joseph K.
Rangnekar, Neel D.
Marshall, Bennett D.
Li, Wenjun
Johnson, J. R.
Bruno, Nicholas C.
Finn, M. G.
Ramprasad, Rampi
Lively, Ryan P.
author_sort Lee, Young Joo
collection PubMed
description Membrane-based organic solvent separations are rapidly emerging as a promising class of technologies for enhancing the energy efficiency of existing separation and purification systems. Polymeric membranes have shown promise in the fractionation or splitting of complex mixtures of organic molecules such as crude oil. Determining the separation performance of a polymer membrane when challenged with a complex mixture has thus far occurred in an ad hoc manner, and methods to predict the performance based on mixture composition and polymer chemistry are unavailable. Here, we combine physics-informed machine learning algorithms (ML) and mass transport simulations to create an integrated predictive model for the separation of complex mixtures containing up to 400 components via any arbitrary linear polymer membrane. We experimentally demonstrate the effectiveness of the model by predicting the separation of two crude oils within 6-7% of the measurements. Integration of ML predictors of diffusion and sorption properties of molecules with transport simulators enables for the rapid screening of polymer membranes prior to physical experimentation for the separation of complex liquid mixtures.
format Online
Article
Text
id pubmed-10427679
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104276792023-08-17 Data-driven predictions of complex organic mixture permeation in polymer membranes Lee, Young Joo Chen, Lihua Nistane, Janhavi Jang, Hye Youn Weber, Dylan J. Scott, Joseph K. Rangnekar, Neel D. Marshall, Bennett D. Li, Wenjun Johnson, J. R. Bruno, Nicholas C. Finn, M. G. Ramprasad, Rampi Lively, Ryan P. Nat Commun Article Membrane-based organic solvent separations are rapidly emerging as a promising class of technologies for enhancing the energy efficiency of existing separation and purification systems. Polymeric membranes have shown promise in the fractionation or splitting of complex mixtures of organic molecules such as crude oil. Determining the separation performance of a polymer membrane when challenged with a complex mixture has thus far occurred in an ad hoc manner, and methods to predict the performance based on mixture composition and polymer chemistry are unavailable. Here, we combine physics-informed machine learning algorithms (ML) and mass transport simulations to create an integrated predictive model for the separation of complex mixtures containing up to 400 components via any arbitrary linear polymer membrane. We experimentally demonstrate the effectiveness of the model by predicting the separation of two crude oils within 6-7% of the measurements. Integration of ML predictors of diffusion and sorption properties of molecules with transport simulators enables for the rapid screening of polymer membranes prior to physical experimentation for the separation of complex liquid mixtures. Nature Publishing Group UK 2023-08-15 /pmc/articles/PMC10427679/ /pubmed/37582784 http://dx.doi.org/10.1038/s41467-023-40257-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lee, Young Joo
Chen, Lihua
Nistane, Janhavi
Jang, Hye Youn
Weber, Dylan J.
Scott, Joseph K.
Rangnekar, Neel D.
Marshall, Bennett D.
Li, Wenjun
Johnson, J. R.
Bruno, Nicholas C.
Finn, M. G.
Ramprasad, Rampi
Lively, Ryan P.
Data-driven predictions of complex organic mixture permeation in polymer membranes
title Data-driven predictions of complex organic mixture permeation in polymer membranes
title_full Data-driven predictions of complex organic mixture permeation in polymer membranes
title_fullStr Data-driven predictions of complex organic mixture permeation in polymer membranes
title_full_unstemmed Data-driven predictions of complex organic mixture permeation in polymer membranes
title_short Data-driven predictions of complex organic mixture permeation in polymer membranes
title_sort data-driven predictions of complex organic mixture permeation in polymer membranes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427679/
https://www.ncbi.nlm.nih.gov/pubmed/37582784
http://dx.doi.org/10.1038/s41467-023-40257-2
work_keys_str_mv AT leeyoungjoo datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT chenlihua datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT nistanejanhavi datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT janghyeyoun datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT weberdylanj datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT scottjosephk datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT rangnekarneeld datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT marshallbennettd datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT liwenjun datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT johnsonjr datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT brunonicholasc datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT finnmg datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT ramprasadrampi datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes
AT livelyryanp datadrivenpredictionsofcomplexorganicmixturepermeationinpolymermembranes