Cargando…
Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder
BACKGROUND: Unravelling the relationships between candidate genes and autism spectrum disorder (ASD) phenotypes remains an outstanding challenge. Endophenotypes, defined as inheritable, measurable quantitative traits, might provide intermediary links between genetic risk factors and multifaceted ASD...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427990/ https://www.ncbi.nlm.nih.gov/pubmed/37544204 http://dx.doi.org/10.1016/j.ebiom.2023.104746 |
_version_ | 1785090366859378688 |
---|---|
author | Lee, In-Hee Walker, Douglas I. Lin, Yufei Smith, Matthew Ryan Mandl, Kenneth D. Jones, Dean P. Kong, Sek Won |
author_facet | Lee, In-Hee Walker, Douglas I. Lin, Yufei Smith, Matthew Ryan Mandl, Kenneth D. Jones, Dean P. Kong, Sek Won |
author_sort | Lee, In-Hee |
collection | PubMed |
description | BACKGROUND: Unravelling the relationships between candidate genes and autism spectrum disorder (ASD) phenotypes remains an outstanding challenge. Endophenotypes, defined as inheritable, measurable quantitative traits, might provide intermediary links between genetic risk factors and multifaceted ASD phenotypes. In this study, we sought to determine whether plasma metabolite levels could serve as endophenotypes in individuals with ASD and their family members. METHODS: We employed an untargeted, high-resolution metabolomics platform to analyse 14,342 features across 1099 plasma samples. These samples were collected from probands and their family members participating in the Autism Genetic Resource Exchange (AGRE) (N = 658), compared with neurotypical individuals enrolled in the PrecisionLink Health Discovery (PLHD) program at Boston Children's Hospital (N = 441). We conducted a metabolite quantitative trait loci (mQTL) analysis using whole-genome genotyping data from each cohort in AGRE and PLHD, aiming to prioritize significant mQTL and metabolite pairs that were exclusively observed in AGRE. FINDINGS: Within the AGRE group, we identified 54 significant associations between genotypes and metabolite levels (P < 5.27 × 10(−)(11)), 44 of which were not observed in the PLHD group. Plasma glutamine levels were found to be associated with variants in the NLGN1 gene, a gene that encodes post-synaptic cell-adhesion molecules in excitatory neurons. This association was not detected in the PLHD group. Notably, a significant negative correlation between plasma glutamine and glutamate levels was observed in the AGRE group, but not in the PLHD group. Furthermore, plasma glutamine levels showed a negative correlation with the severity of restrictive and repetitive behaviours (RRB) in ASD, although no direct association was observed between RRB severity and the NLGN1 genotype. INTERPRETATION: Our findings suggest that plasma glutamine levels could potentially serve as an endophenotype, thus establishing a link between the genetic risk associated with NLGN1 and the severity of RRB in ASD. This identified association could facilitate the development of novel therapeutic targets, assist in selecting specific cohorts for clinical trials, and provide insights into target symptoms for future ASD treatment strategies. FUNDING: This work was supported by the National Institute of Health (grant numbers: R01MH107205, U01TR002623, R24OD024622, OT2OD032720, and R01NS129188) and the PrecisionLink Biobank for Health Discovery at Boston Children’s Hospital. |
format | Online Article Text |
id | pubmed-10427990 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104279902023-08-17 Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder Lee, In-Hee Walker, Douglas I. Lin, Yufei Smith, Matthew Ryan Mandl, Kenneth D. Jones, Dean P. Kong, Sek Won eBioMedicine Articles BACKGROUND: Unravelling the relationships between candidate genes and autism spectrum disorder (ASD) phenotypes remains an outstanding challenge. Endophenotypes, defined as inheritable, measurable quantitative traits, might provide intermediary links between genetic risk factors and multifaceted ASD phenotypes. In this study, we sought to determine whether plasma metabolite levels could serve as endophenotypes in individuals with ASD and their family members. METHODS: We employed an untargeted, high-resolution metabolomics platform to analyse 14,342 features across 1099 plasma samples. These samples were collected from probands and their family members participating in the Autism Genetic Resource Exchange (AGRE) (N = 658), compared with neurotypical individuals enrolled in the PrecisionLink Health Discovery (PLHD) program at Boston Children's Hospital (N = 441). We conducted a metabolite quantitative trait loci (mQTL) analysis using whole-genome genotyping data from each cohort in AGRE and PLHD, aiming to prioritize significant mQTL and metabolite pairs that were exclusively observed in AGRE. FINDINGS: Within the AGRE group, we identified 54 significant associations between genotypes and metabolite levels (P < 5.27 × 10(−)(11)), 44 of which were not observed in the PLHD group. Plasma glutamine levels were found to be associated with variants in the NLGN1 gene, a gene that encodes post-synaptic cell-adhesion molecules in excitatory neurons. This association was not detected in the PLHD group. Notably, a significant negative correlation between plasma glutamine and glutamate levels was observed in the AGRE group, but not in the PLHD group. Furthermore, plasma glutamine levels showed a negative correlation with the severity of restrictive and repetitive behaviours (RRB) in ASD, although no direct association was observed between RRB severity and the NLGN1 genotype. INTERPRETATION: Our findings suggest that plasma glutamine levels could potentially serve as an endophenotype, thus establishing a link between the genetic risk associated with NLGN1 and the severity of RRB in ASD. This identified association could facilitate the development of novel therapeutic targets, assist in selecting specific cohorts for clinical trials, and provide insights into target symptoms for future ASD treatment strategies. FUNDING: This work was supported by the National Institute of Health (grant numbers: R01MH107205, U01TR002623, R24OD024622, OT2OD032720, and R01NS129188) and the PrecisionLink Biobank for Health Discovery at Boston Children’s Hospital. Elsevier 2023-08-04 /pmc/articles/PMC10427990/ /pubmed/37544204 http://dx.doi.org/10.1016/j.ebiom.2023.104746 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Articles Lee, In-Hee Walker, Douglas I. Lin, Yufei Smith, Matthew Ryan Mandl, Kenneth D. Jones, Dean P. Kong, Sek Won Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder |
title | Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder |
title_full | Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder |
title_fullStr | Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder |
title_full_unstemmed | Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder |
title_short | Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder |
title_sort | association between neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427990/ https://www.ncbi.nlm.nih.gov/pubmed/37544204 http://dx.doi.org/10.1016/j.ebiom.2023.104746 |
work_keys_str_mv | AT leeinhee associationbetweenneuroligin1polymorphismandplasmaglutaminelevelsinindividualswithautismspectrumdisorder AT walkerdouglasi associationbetweenneuroligin1polymorphismandplasmaglutaminelevelsinindividualswithautismspectrumdisorder AT linyufei associationbetweenneuroligin1polymorphismandplasmaglutaminelevelsinindividualswithautismspectrumdisorder AT smithmatthewryan associationbetweenneuroligin1polymorphismandplasmaglutaminelevelsinindividualswithautismspectrumdisorder AT mandlkennethd associationbetweenneuroligin1polymorphismandplasmaglutaminelevelsinindividualswithautismspectrumdisorder AT jonesdeanp associationbetweenneuroligin1polymorphismandplasmaglutaminelevelsinindividualswithautismspectrumdisorder AT kongsekwon associationbetweenneuroligin1polymorphismandplasmaglutaminelevelsinindividualswithautismspectrumdisorder |