Cargando…
Predicting anticancer drug sensitivity on distributed data sources using federated deep learning
Drug sensitivity prediction plays a crucial role in precision cancer therapy. Collaboration among medical institutions can lead to better performance in drug sensitivity prediction. However, patient privacy and data protection regulation remain a severe impediment to centralized prediction studies....
Autores principales: | Xu, Xiaolu, Qi, Zitong, Han, Xiumei, Xu, Aiguo, Geng, Zhaohong, He, Xinyu, Ren, Yonggong, Duo, Zhaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427996/ https://www.ncbi.nlm.nih.gov/pubmed/37593639 http://dx.doi.org/10.1016/j.heliyon.2023.e18615 |
Ejemplares similares
-
DriverGenePathway: Identifying driver genes and driver pathways in cancer based on MutSigCV and statistical methods
por: Xu, Xiaolu, et al.
Publicado: (2023) -
Deep Federated Adaptation: An Adaptative Residential Load Forecasting Approach with Federated Learning
por: Shi, Yuan, et al.
Publicado: (2022) -
A biomedical event extraction method based on fine-grained and attention mechanism
por: He, Xinyu, et al.
Publicado: (2022) -
Distributed Raman Spectrum Data Augmentation System Using Federated Learning with Deep Generative Models
por: Kim, Yaeran, et al.
Publicado: (2022) -
Federating Distributed Storage For Clouds In ATLAS
por: Berghaus, Frank, et al.
Publicado: (2017)