Cargando…
A study on the collapse characteristics of loess based on energy spectrum superposition method
Mineral types form the basis for studying the structural stability of loess, and identifying mineral types at the microscopic scale has always been a difficult task. Identifying mineral types at the microscopic scale is very helpful in understanding the differential role that different minerals play...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428057/ https://www.ncbi.nlm.nih.gov/pubmed/37593624 http://dx.doi.org/10.1016/j.heliyon.2023.e18643 |
_version_ | 1785090381403127808 |
---|---|
author | Zhang, Xiaozhou Li, Xin Lu, Yangchun Lu, Yudong Fan, Wen |
author_facet | Zhang, Xiaozhou Li, Xin Lu, Yangchun Lu, Yudong Fan, Wen |
author_sort | Zhang, Xiaozhou |
collection | PubMed |
description | Mineral types form the basis for studying the structural stability of loess, and identifying mineral types at the microscopic scale has always been a difficult task. Identifying mineral types at the microscopic scale is very helpful in understanding the differential role that different minerals play in the structural stability of loess, and it can also clarify the specific mineral changes that occur during the process of humidification and dehumidification. Using an innovative energy spectrum superposition method, this article combines backscattered electron imaging and X-ray energy spectrum analysis results to achieve direct identification of the eight main minerals in loess, including quartz, illite, and chlorite, within SEM images. The mineral identification results provide a basis for statistical analysis of mineral water sensitivity and morphological changes under wetting conditions. The results demonstrate that chlorite and hematite, which account for no more than 23% of the loess composition, play a crucial role in binding. Furthermore, these minerals exhibit significant hydrolysis phenomena. Particularly, the intense decomposition of chlorite leads to the displacement of non-binding quartz and feldspar particles, thereby altering the pore structure of loess. These findings are of great significance in understanding the multi-level collapsibility of loess. |
format | Online Article Text |
id | pubmed-10428057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104280572023-08-17 A study on the collapse characteristics of loess based on energy spectrum superposition method Zhang, Xiaozhou Li, Xin Lu, Yangchun Lu, Yudong Fan, Wen Heliyon Research Article Mineral types form the basis for studying the structural stability of loess, and identifying mineral types at the microscopic scale has always been a difficult task. Identifying mineral types at the microscopic scale is very helpful in understanding the differential role that different minerals play in the structural stability of loess, and it can also clarify the specific mineral changes that occur during the process of humidification and dehumidification. Using an innovative energy spectrum superposition method, this article combines backscattered electron imaging and X-ray energy spectrum analysis results to achieve direct identification of the eight main minerals in loess, including quartz, illite, and chlorite, within SEM images. The mineral identification results provide a basis for statistical analysis of mineral water sensitivity and morphological changes under wetting conditions. The results demonstrate that chlorite and hematite, which account for no more than 23% of the loess composition, play a crucial role in binding. Furthermore, these minerals exhibit significant hydrolysis phenomena. Particularly, the intense decomposition of chlorite leads to the displacement of non-binding quartz and feldspar particles, thereby altering the pore structure of loess. These findings are of great significance in understanding the multi-level collapsibility of loess. Elsevier 2023-07-28 /pmc/articles/PMC10428057/ /pubmed/37593624 http://dx.doi.org/10.1016/j.heliyon.2023.e18643 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Zhang, Xiaozhou Li, Xin Lu, Yangchun Lu, Yudong Fan, Wen A study on the collapse characteristics of loess based on energy spectrum superposition method |
title | A study on the collapse characteristics of loess based on energy spectrum superposition method |
title_full | A study on the collapse characteristics of loess based on energy spectrum superposition method |
title_fullStr | A study on the collapse characteristics of loess based on energy spectrum superposition method |
title_full_unstemmed | A study on the collapse characteristics of loess based on energy spectrum superposition method |
title_short | A study on the collapse characteristics of loess based on energy spectrum superposition method |
title_sort | study on the collapse characteristics of loess based on energy spectrum superposition method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428057/ https://www.ncbi.nlm.nih.gov/pubmed/37593624 http://dx.doi.org/10.1016/j.heliyon.2023.e18643 |
work_keys_str_mv | AT zhangxiaozhou astudyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT lixin astudyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT luyangchun astudyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT luyudong astudyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT fanwen astudyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT zhangxiaozhou studyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT lixin studyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT luyangchun studyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT luyudong studyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod AT fanwen studyonthecollapsecharacteristicsofloessbasedonenergyspectrumsuperpositionmethod |