Cargando…
Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age)
An experiment was carried out to evaluate the impact of mixed Eimeria challenge on skeletal health of Hy-Line W-36 pullets. A total of 540, 16-day-old pullets were randomly allocated into 5 treatment groups, including a nonchallenged control. A mixed Eimeria species solution containing 50,000 E. max...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428119/ https://www.ncbi.nlm.nih.gov/pubmed/37542924 http://dx.doi.org/10.1016/j.psj.2023.102888 |
_version_ | 1785090396471164928 |
---|---|
author | Sharma, Milan K. Liu, Guanchen White, Dima L. Tompkins, Yuguo H. Kim, Woo K. |
author_facet | Sharma, Milan K. Liu, Guanchen White, Dima L. Tompkins, Yuguo H. Kim, Woo K. |
author_sort | Sharma, Milan K. |
collection | PubMed |
description | An experiment was carried out to evaluate the impact of mixed Eimeria challenge on skeletal health of Hy-Line W-36 pullets. A total of 540, 16-day-old pullets were randomly allocated into 5 treatment groups, including a nonchallenged control. A mixed Eimeria species solution containing 50,000 E. maxima, 50,000 E. tenella, and 250,000 E. acervulina oocysts per mL was prepared and challenged to 1 group as a high-dose treatment. The 2-fold serial dilution was done to prepare the medium-high (25,000 E. maxima; 25,000 E. tenella; 125,000 E. acervulina), the medium-low (12,500 E. maxima; 12,500 E. tenella; 62,500 E. acervulina), and the low (6,250 E. maxima; 6,250 E. tenella; 31,250 E. acervulina) dose treatments which were challenged to 3 corresponding groups, respectively. The mineral apposition rate (MAR) was measured from 0 to 14 d post inoculation (DPI) and 14 to 28 DPI using calcein injection. The microstructural architecture of the femur was analyzed using the Skyscan X-ray microtomography (microCT) on 6, 14, and 28 DPI. The results showed that the MAR decreased linearly with an increase in the challenged dose (P < 0.05) during 0 to 14 DPI. The results of microCT revealed that cortical and total BMD, BMC, bone volume (BV), and bone volume as a fraction of tissue volume (BV/TV) of femur decreased both linearly (P < 0.05). Conversely, the total number of pores increased linearly with an increase in challenge dosages on 6 and 14 DPI. Trabecular BMD, BV, BV/TV, trabecular number, and trabecular thickness decreased linearly with an increase in the challenge dosages (P < 0.05) on 6 DPI. Furthermore, Eimeria infection significantly increased the number of osteoclasts and osteoclastic activity (P = 0.001). The result of this study suggests that the mixed Eimeria challenge negatively impacts the quality of skeletal health in a linear or quadratic manner with an increase in the concentration of Eimeria oocysts. The negative impact on long bone development might be due to malabsorption, nutrient deficiency during the infection, along with oxidative stress/inflammation disrupting the balance of osteoblastic and osteoclastic cells and their functions. |
format | Online Article Text |
id | pubmed-10428119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104281192023-08-17 Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age) Sharma, Milan K. Liu, Guanchen White, Dima L. Tompkins, Yuguo H. Kim, Woo K. Poult Sci IMMUNOLOGY, HEALTH AND DISEASE An experiment was carried out to evaluate the impact of mixed Eimeria challenge on skeletal health of Hy-Line W-36 pullets. A total of 540, 16-day-old pullets were randomly allocated into 5 treatment groups, including a nonchallenged control. A mixed Eimeria species solution containing 50,000 E. maxima, 50,000 E. tenella, and 250,000 E. acervulina oocysts per mL was prepared and challenged to 1 group as a high-dose treatment. The 2-fold serial dilution was done to prepare the medium-high (25,000 E. maxima; 25,000 E. tenella; 125,000 E. acervulina), the medium-low (12,500 E. maxima; 12,500 E. tenella; 62,500 E. acervulina), and the low (6,250 E. maxima; 6,250 E. tenella; 31,250 E. acervulina) dose treatments which were challenged to 3 corresponding groups, respectively. The mineral apposition rate (MAR) was measured from 0 to 14 d post inoculation (DPI) and 14 to 28 DPI using calcein injection. The microstructural architecture of the femur was analyzed using the Skyscan X-ray microtomography (microCT) on 6, 14, and 28 DPI. The results showed that the MAR decreased linearly with an increase in the challenged dose (P < 0.05) during 0 to 14 DPI. The results of microCT revealed that cortical and total BMD, BMC, bone volume (BV), and bone volume as a fraction of tissue volume (BV/TV) of femur decreased both linearly (P < 0.05). Conversely, the total number of pores increased linearly with an increase in challenge dosages on 6 and 14 DPI. Trabecular BMD, BV, BV/TV, trabecular number, and trabecular thickness decreased linearly with an increase in the challenge dosages (P < 0.05) on 6 DPI. Furthermore, Eimeria infection significantly increased the number of osteoclasts and osteoclastic activity (P = 0.001). The result of this study suggests that the mixed Eimeria challenge negatively impacts the quality of skeletal health in a linear or quadratic manner with an increase in the concentration of Eimeria oocysts. The negative impact on long bone development might be due to malabsorption, nutrient deficiency during the infection, along with oxidative stress/inflammation disrupting the balance of osteoblastic and osteoclastic cells and their functions. Elsevier 2023-06-21 /pmc/articles/PMC10428119/ /pubmed/37542924 http://dx.doi.org/10.1016/j.psj.2023.102888 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | IMMUNOLOGY, HEALTH AND DISEASE Sharma, Milan K. Liu, Guanchen White, Dima L. Tompkins, Yuguo H. Kim, Woo K. Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age) |
title | Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age) |
title_full | Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age) |
title_fullStr | Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age) |
title_full_unstemmed | Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age) |
title_short | Graded levels of Eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of Hy-Line W-36 pullets at early stage of growth (0–6 wk of age) |
title_sort | graded levels of eimeria challenge altered the microstructural architecture and reduced the cortical bone growth of femur of hy-line w-36 pullets at early stage of growth (0–6 wk of age) |
topic | IMMUNOLOGY, HEALTH AND DISEASE |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428119/ https://www.ncbi.nlm.nih.gov/pubmed/37542924 http://dx.doi.org/10.1016/j.psj.2023.102888 |
work_keys_str_mv | AT sharmamilank gradedlevelsofeimeriachallengealteredthemicrostructuralarchitectureandreducedthecorticalbonegrowthoffemurofhylinew36pulletsatearlystageofgrowth06wkofage AT liuguanchen gradedlevelsofeimeriachallengealteredthemicrostructuralarchitectureandreducedthecorticalbonegrowthoffemurofhylinew36pulletsatearlystageofgrowth06wkofage AT whitedimal gradedlevelsofeimeriachallengealteredthemicrostructuralarchitectureandreducedthecorticalbonegrowthoffemurofhylinew36pulletsatearlystageofgrowth06wkofage AT tompkinsyuguoh gradedlevelsofeimeriachallengealteredthemicrostructuralarchitectureandreducedthecorticalbonegrowthoffemurofhylinew36pulletsatearlystageofgrowth06wkofage AT kimwook gradedlevelsofeimeriachallengealteredthemicrostructuralarchitectureandreducedthecorticalbonegrowthoffemurofhylinew36pulletsatearlystageofgrowth06wkofage |