Cargando…
Improving Compound–Protein Interaction Prediction by Self-Training with Augmenting Negative Samples
[Image: see text] Identifying compound-protein interactions (CPIs) is crucial for drug discovery. Since experimentally validating CPIs is often time-consuming and costly, computational approaches are expected to facilitate the process. Rapid growths of available CPI databases have accelerated the de...
Autores principales: | Koyama, Takuto, Matsumoto, Shigeyuki, Iwata, Hiroaki, Kojima, Ryosuke, Okuno, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428206/ https://www.ncbi.nlm.nih.gov/pubmed/37460105 http://dx.doi.org/10.1021/acs.jcim.3c00269 |
Ejemplares similares
-
An in silico Approach for Integrating Phenotypic and Target‐based Approaches in Drug Discovery
por: Iwata, Hiroaki, et al.
Publicado: (2019) -
kGCN: a graph-based deep learning framework for chemical structures
por: Kojima, Ryosuke, et al.
Publicado: (2020) -
Enhanced Conformational Sampling with an Adaptive
Coarse-Grained Elastic Network Model Using Short-Time All-Atom Molecular
Dynamics
por: Kanada, Ryo, et al.
Publicado: (2022) -
Health improvement framework for actionable treatment planning using a surrogate Bayesian model
por: Nakamura, Kazuki, et al.
Publicado: (2021) -
Network-based prediction approach for cancer-specific driver missense mutations using a graph neural network
por: Hatano, Narumi, et al.
Publicado: (2023)