Cargando…

PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH

Detalles Bibliográficos
Autores principales: Pianko, Matthew J., Gupta-Werner, Niodita, Emond, Bruno, Lefebvre, Patrick, Lafeuille, Marie-Helene, Cortoos, Annelore, Kaila, Shuchita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10429422/
http://dx.doi.org/10.1097/01.HS9.0000975224.49634.6b
_version_ 1785090709130313728
author Pianko, Matthew J.
Gupta-Werner, Niodita
Emond, Bruno
Lefebvre, Patrick
Lafeuille, Marie-Helene
Cortoos, Annelore
Kaila, Shuchita
author_facet Pianko, Matthew J.
Gupta-Werner, Niodita
Emond, Bruno
Lefebvre, Patrick
Lafeuille, Marie-Helene
Cortoos, Annelore
Kaila, Shuchita
author_sort Pianko, Matthew J.
collection PubMed
description
format Online
Article
Text
id pubmed-10429422
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-104294222023-08-17 PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH Pianko, Matthew J. Gupta-Werner, Niodita Emond, Bruno Lefebvre, Patrick Lafeuille, Marie-Helene Cortoos, Annelore Kaila, Shuchita Hemasphere Publication Only Lippincott Williams & Wilkins 2023-08-08 /pmc/articles/PMC10429422/ http://dx.doi.org/10.1097/01.HS9.0000975224.49634.6b Text en Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.
spellingShingle Publication Only
Pianko, Matthew J.
Gupta-Werner, Niodita
Emond, Bruno
Lefebvre, Patrick
Lafeuille, Marie-Helene
Cortoos, Annelore
Kaila, Shuchita
PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH
title PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH
title_full PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH
title_fullStr PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH
title_full_unstemmed PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH
title_short PB2110: PREDICTORS OF FRONTLINE (FL) DOUBLET OR TRIPLET REGIMEN USE AMONG TRANSPLANT-INELIGIBLE (TIE) PATIENTS (PTS) WITH NEWLY DIAGNOSED MULTIPLE MYELOMA (NDMM) USING A MACHINE LEARNING APPROACH
title_sort pb2110: predictors of frontline (fl) doublet or triplet regimen use among transplant-ineligible (tie) patients (pts) with newly diagnosed multiple myeloma (ndmm) using a machine learning approach
topic Publication Only
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10429422/
http://dx.doi.org/10.1097/01.HS9.0000975224.49634.6b
work_keys_str_mv AT piankomatthewj pb2110predictorsoffrontlinefldoubletortripletregimenuseamongtransplantineligibletiepatientsptswithnewlydiagnosedmultiplemyelomandmmusingamachinelearningapproach
AT guptawernerniodita pb2110predictorsoffrontlinefldoubletortripletregimenuseamongtransplantineligibletiepatientsptswithnewlydiagnosedmultiplemyelomandmmusingamachinelearningapproach
AT emondbruno pb2110predictorsoffrontlinefldoubletortripletregimenuseamongtransplantineligibletiepatientsptswithnewlydiagnosedmultiplemyelomandmmusingamachinelearningapproach
AT lefebvrepatrick pb2110predictorsoffrontlinefldoubletortripletregimenuseamongtransplantineligibletiepatientsptswithnewlydiagnosedmultiplemyelomandmmusingamachinelearningapproach
AT lafeuillemariehelene pb2110predictorsoffrontlinefldoubletortripletregimenuseamongtransplantineligibletiepatientsptswithnewlydiagnosedmultiplemyelomandmmusingamachinelearningapproach
AT cortoosannelore pb2110predictorsoffrontlinefldoubletortripletregimenuseamongtransplantineligibletiepatientsptswithnewlydiagnosedmultiplemyelomandmmusingamachinelearningapproach
AT kailashuchita pb2110predictorsoffrontlinefldoubletortripletregimenuseamongtransplantineligibletiepatientsptswithnewlydiagnosedmultiplemyelomandmmusingamachinelearningapproach