Cargando…
Triplet quenching pathway control with molecular dyads enables the identification of a highly oxidizing annihilator class
Metal complex – arene dyads typically act as more potent triplet energy donors compared to their parent metal complexes, which is frequently exploited for increasing the efficiencies of energy transfer applications. Using unexplored dicationic phosphonium-bridged ladder stilbenes (P–X(2+)) as quench...
Autores principales: | Bertrams, Maria-Sophie, Hermainski, Katharina, Mörsdorf, Jean-Marc, Ballmann, Joachim, Kerzig, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430750/ https://www.ncbi.nlm.nih.gov/pubmed/37592982 http://dx.doi.org/10.1039/d3sc01725g |
Ejemplares similares
-
Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations
por: Kerzig, Christoph, et al.
Publicado: (2018) -
Blue‐to‐UVB Upconversion, Solvent Sensitization and Challenging Bond Activation Enabled by a Benzene‐Based Annihilator
por: Zähringer, Till J. B., et al.
Publicado: (2023) -
Two dimensional diffusion-controlled triplet–triplet annihilation kinetics
por: Gschwend, Grégoire C., et al.
Publicado: (2019) -
In silico prediction of annihilators for triplet–triplet annihilation upconversion via auxiliary-field quantum Monte Carlo
por: Weber, John L., et al.
Publicado: (2020) -
Efficient Triplet‐Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism
por: Wang, Cui, et al.
Publicado: (2022)