Cargando…
Use of artificial intelligence in paediatric anaesthesia: a systematic review
OBJECTIVES: Although the development of artificial intelligence (AI) technologies in medicine has been significant, their application to paediatric anaesthesia is not well characterised. As the paediatric operating room is a data-rich environment that requires critical clinical decision-making, this...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430814/ https://www.ncbi.nlm.nih.gov/pubmed/37587993 http://dx.doi.org/10.1016/j.bjao.2023.100125 |
_version_ | 1785091051453677568 |
---|---|
author | Antel, Ryan Sahlas, Ella Gore, Genevieve Ingelmo, Pablo |
author_facet | Antel, Ryan Sahlas, Ella Gore, Genevieve Ingelmo, Pablo |
author_sort | Antel, Ryan |
collection | PubMed |
description | OBJECTIVES: Although the development of artificial intelligence (AI) technologies in medicine has been significant, their application to paediatric anaesthesia is not well characterised. As the paediatric operating room is a data-rich environment that requires critical clinical decision-making, this systematic review aims to characterise the current use of AI in paediatric anaesthesia and to identify barriers to the successful integration of such technologies. METHODS: This review was registered with PROSPERO (CRD42022304610), the international registry for systematic reviews. The search strategy was prepared by a librarian and run in five electronic databases (Embase, Medline, Central, Scopus, and Web of Science). Collected articles were screened by two reviewers. Included studies described the use of AI for paediatric anaesthesia (<18 yr old) within the perioperative setting. RESULTS: From 3313 records identified in the initial search, 40 were included in this review. Identified applications of AI were described for patient risk factor prediction (24 studies; 60%), anaesthetic depth estimation (2; 5%), anaesthetic medication/technique decision guidance (2; 5%), intubation assistance (1; 2.5%), airway device selection (3; 7.5%), physiological variable monitoring (6; 15%), and operating room scheduling (2; 5%). Multiple domains of AI were discussed including machine learning, computer vision, fuzzy logic, and natural language processing. CONCLUSION: There is an emerging literature regarding applications of AI for paediatric anaesthesia, and their clinical integration holds potential for ultimately improving patient outcomes. However, multiple barriers to their clinical integration remain including a lack of high-quality input data, lack of external validation/evaluation, and unclear generalisability to diverse settings. SYSTEMATIC REVIEW PROTOCOL: CRD42022304610 (PROSPERO). |
format | Online Article Text |
id | pubmed-10430814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104308142023-08-16 Use of artificial intelligence in paediatric anaesthesia: a systematic review Antel, Ryan Sahlas, Ella Gore, Genevieve Ingelmo, Pablo BJA Open Systematic review/Meta-analysis OBJECTIVES: Although the development of artificial intelligence (AI) technologies in medicine has been significant, their application to paediatric anaesthesia is not well characterised. As the paediatric operating room is a data-rich environment that requires critical clinical decision-making, this systematic review aims to characterise the current use of AI in paediatric anaesthesia and to identify barriers to the successful integration of such technologies. METHODS: This review was registered with PROSPERO (CRD42022304610), the international registry for systematic reviews. The search strategy was prepared by a librarian and run in five electronic databases (Embase, Medline, Central, Scopus, and Web of Science). Collected articles were screened by two reviewers. Included studies described the use of AI for paediatric anaesthesia (<18 yr old) within the perioperative setting. RESULTS: From 3313 records identified in the initial search, 40 were included in this review. Identified applications of AI were described for patient risk factor prediction (24 studies; 60%), anaesthetic depth estimation (2; 5%), anaesthetic medication/technique decision guidance (2; 5%), intubation assistance (1; 2.5%), airway device selection (3; 7.5%), physiological variable monitoring (6; 15%), and operating room scheduling (2; 5%). Multiple domains of AI were discussed including machine learning, computer vision, fuzzy logic, and natural language processing. CONCLUSION: There is an emerging literature regarding applications of AI for paediatric anaesthesia, and their clinical integration holds potential for ultimately improving patient outcomes. However, multiple barriers to their clinical integration remain including a lack of high-quality input data, lack of external validation/evaluation, and unclear generalisability to diverse settings. SYSTEMATIC REVIEW PROTOCOL: CRD42022304610 (PROSPERO). Elsevier 2023-02-07 /pmc/articles/PMC10430814/ /pubmed/37587993 http://dx.doi.org/10.1016/j.bjao.2023.100125 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Systematic review/Meta-analysis Antel, Ryan Sahlas, Ella Gore, Genevieve Ingelmo, Pablo Use of artificial intelligence in paediatric anaesthesia: a systematic review |
title | Use of artificial intelligence in paediatric anaesthesia: a systematic review |
title_full | Use of artificial intelligence in paediatric anaesthesia: a systematic review |
title_fullStr | Use of artificial intelligence in paediatric anaesthesia: a systematic review |
title_full_unstemmed | Use of artificial intelligence in paediatric anaesthesia: a systematic review |
title_short | Use of artificial intelligence in paediatric anaesthesia: a systematic review |
title_sort | use of artificial intelligence in paediatric anaesthesia: a systematic review |
topic | Systematic review/Meta-analysis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430814/ https://www.ncbi.nlm.nih.gov/pubmed/37587993 http://dx.doi.org/10.1016/j.bjao.2023.100125 |
work_keys_str_mv | AT antelryan useofartificialintelligenceinpaediatricanaesthesiaasystematicreview AT sahlasella useofartificialintelligenceinpaediatricanaesthesiaasystematicreview AT goregenevieve useofartificialintelligenceinpaediatricanaesthesiaasystematicreview AT ingelmopablo useofartificialintelligenceinpaediatricanaesthesiaasystematicreview |