Cargando…

Risk scores in anaesthesia: the future is hard to predict

External validation helps to assess whether a given risk prediction model will perform well in a target population. Validation is an important step in maintaining the utility of risk prediction models, as their ability to provide reliable risk estimates will deteriorate over time (calibration drift)...

Descripción completa

Detalles Bibliográficos
Autores principales: Drayton, Daniel James, Ayres, Michael, Relton, Samuel D., Sperrin, Matthew, Hall, Marlous
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430853/
https://www.ncbi.nlm.nih.gov/pubmed/37588581
http://dx.doi.org/10.1016/j.bjao.2022.100027
_version_ 1785091061590261760
author Drayton, Daniel James
Ayres, Michael
Relton, Samuel D.
Sperrin, Matthew
Hall, Marlous
author_facet Drayton, Daniel James
Ayres, Michael
Relton, Samuel D.
Sperrin, Matthew
Hall, Marlous
author_sort Drayton, Daniel James
collection PubMed
description External validation helps to assess whether a given risk prediction model will perform well in a target population. Validation is an important step in maintaining the utility of risk prediction models, as their ability to provide reliable risk estimates will deteriorate over time (calibration drift).
format Online
Article
Text
id pubmed-10430853
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104308532023-08-16 Risk scores in anaesthesia: the future is hard to predict Drayton, Daniel James Ayres, Michael Relton, Samuel D. Sperrin, Matthew Hall, Marlous BJA Open Editorial External validation helps to assess whether a given risk prediction model will perform well in a target population. Validation is an important step in maintaining the utility of risk prediction models, as their ability to provide reliable risk estimates will deteriorate over time (calibration drift). Elsevier 2022-08-17 /pmc/articles/PMC10430853/ /pubmed/37588581 http://dx.doi.org/10.1016/j.bjao.2022.100027 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Editorial
Drayton, Daniel James
Ayres, Michael
Relton, Samuel D.
Sperrin, Matthew
Hall, Marlous
Risk scores in anaesthesia: the future is hard to predict
title Risk scores in anaesthesia: the future is hard to predict
title_full Risk scores in anaesthesia: the future is hard to predict
title_fullStr Risk scores in anaesthesia: the future is hard to predict
title_full_unstemmed Risk scores in anaesthesia: the future is hard to predict
title_short Risk scores in anaesthesia: the future is hard to predict
title_sort risk scores in anaesthesia: the future is hard to predict
topic Editorial
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430853/
https://www.ncbi.nlm.nih.gov/pubmed/37588581
http://dx.doi.org/10.1016/j.bjao.2022.100027
work_keys_str_mv AT draytondanieljames riskscoresinanaesthesiathefutureishardtopredict
AT ayresmichael riskscoresinanaesthesiathefutureishardtopredict
AT reltonsamueld riskscoresinanaesthesiathefutureishardtopredict
AT sperrinmatthew riskscoresinanaesthesiathefutureishardtopredict
AT hallmarlous riskscoresinanaesthesiathefutureishardtopredict