Cargando…
Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry
BACKGROUND: This exploratory study aimed to investigate whether dexmedetomidine, propofol, sevoflurane, and S-ketamine affect oxylipins and bile acids, which are functionally diverse molecules with possible connections to cellular bioenergetics, immune modulation, and organ protection. METHODS: In t...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430865/ https://www.ncbi.nlm.nih.gov/pubmed/37588789 http://dx.doi.org/10.1016/j.bjao.2022.100114 |
_version_ | 1785091063660150784 |
---|---|
author | Nummela, Aleksi Laaksonen, Lauri Scheinin, Annalotta Kaisti, Kaike Vahlberg, Tero Neuvonen, Mikko Valli, Katja Revonsuo, Antti Perola, Markus Niemi, Mikko Scheinin, Harry Laitio, Timo |
author_facet | Nummela, Aleksi Laaksonen, Lauri Scheinin, Annalotta Kaisti, Kaike Vahlberg, Tero Neuvonen, Mikko Valli, Katja Revonsuo, Antti Perola, Markus Niemi, Mikko Scheinin, Harry Laitio, Timo |
author_sort | Nummela, Aleksi |
collection | PubMed |
description | BACKGROUND: This exploratory study aimed to investigate whether dexmedetomidine, propofol, sevoflurane, and S-ketamine affect oxylipins and bile acids, which are functionally diverse molecules with possible connections to cellular bioenergetics, immune modulation, and organ protection. METHODS: In this randomised, open-label, controlled, parallel group, Phase IV clinical drug trial, healthy male subjects (n=160) received equipotent doses (EC(50) for verbal command) of dexmedetomidine (1.5 ng ml(−1); n=40), propofol (1.7 μg ml(−1); n=40), sevoflurane (0.9% end-tidal; n=40), S-ketamine (0.75 μg ml(−1); n=20), or placebo (n=20). Blood samples for tandem mass spectrometry were obtained at baseline, after study drug administration at 60 and 130 min from baseline; 40 metabolites were analysed. RESULTS: Statistically significant changes vs placebo were observed in 62.5%, 12.5%, 5.0%, and 2.5% of analytes in dexmedetomidine, propofol, sevoflurane, and S-ketamine groups, respectively. Data are presented as standard deviation score, 95% confidence interval, and P-value. Dexmedetomidine induced wide-ranging decreases in oxylipins and bile acids. Amongst others, 9,10-dihydroxyoctadecenoic acid (DiHOME) –1.19 (–1.6; –0.78), P<0.001 and 12,13-DiHOME –1.22 (–1.66; –0.77), P<0.001 were affected. Propofol elevated 9,10-DiHOME 2.29 (1.62; 2.96), P<0.001 and 12,13-DiHOME 2.13 (1.42; 2.84), P<0.001. Analytes were mostly unaffected by S-ketamine. Sevoflurane decreased tauroursodeoxycholic acid (TUDCA) –2.7 (–3.84; –1.55), P=0.015. CONCLUSIONS: Dexmedetomidine-induced oxylipin alterations may be connected to pathways associated with organ protection. In contrast to dexmedetomidine, propofol emulsion elevated DiHOMEs, oxylipins associated with acute respiratory distress syndrome, and mitochondrial dysfunction in high concentrations. Further research is needed to establish the behaviour of DIHOMEs during prolonged propofol/dexmedetomidine infusions and to verify the sevoflurane-induced reduction in TUDCA, a suggested neuroprotective agent. CLINICAL TRIAL REGISTRATION: NCT02624401. |
format | Online Article Text |
id | pubmed-10430865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104308652023-08-16 Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry Nummela, Aleksi Laaksonen, Lauri Scheinin, Annalotta Kaisti, Kaike Vahlberg, Tero Neuvonen, Mikko Valli, Katja Revonsuo, Antti Perola, Markus Niemi, Mikko Scheinin, Harry Laitio, Timo BJA Open Original Research Article BACKGROUND: This exploratory study aimed to investigate whether dexmedetomidine, propofol, sevoflurane, and S-ketamine affect oxylipins and bile acids, which are functionally diverse molecules with possible connections to cellular bioenergetics, immune modulation, and organ protection. METHODS: In this randomised, open-label, controlled, parallel group, Phase IV clinical drug trial, healthy male subjects (n=160) received equipotent doses (EC(50) for verbal command) of dexmedetomidine (1.5 ng ml(−1); n=40), propofol (1.7 μg ml(−1); n=40), sevoflurane (0.9% end-tidal; n=40), S-ketamine (0.75 μg ml(−1); n=20), or placebo (n=20). Blood samples for tandem mass spectrometry were obtained at baseline, after study drug administration at 60 and 130 min from baseline; 40 metabolites were analysed. RESULTS: Statistically significant changes vs placebo were observed in 62.5%, 12.5%, 5.0%, and 2.5% of analytes in dexmedetomidine, propofol, sevoflurane, and S-ketamine groups, respectively. Data are presented as standard deviation score, 95% confidence interval, and P-value. Dexmedetomidine induced wide-ranging decreases in oxylipins and bile acids. Amongst others, 9,10-dihydroxyoctadecenoic acid (DiHOME) –1.19 (–1.6; –0.78), P<0.001 and 12,13-DiHOME –1.22 (–1.66; –0.77), P<0.001 were affected. Propofol elevated 9,10-DiHOME 2.29 (1.62; 2.96), P<0.001 and 12,13-DiHOME 2.13 (1.42; 2.84), P<0.001. Analytes were mostly unaffected by S-ketamine. Sevoflurane decreased tauroursodeoxycholic acid (TUDCA) –2.7 (–3.84; –1.55), P=0.015. CONCLUSIONS: Dexmedetomidine-induced oxylipin alterations may be connected to pathways associated with organ protection. In contrast to dexmedetomidine, propofol emulsion elevated DiHOMEs, oxylipins associated with acute respiratory distress syndrome, and mitochondrial dysfunction in high concentrations. Further research is needed to establish the behaviour of DIHOMEs during prolonged propofol/dexmedetomidine infusions and to verify the sevoflurane-induced reduction in TUDCA, a suggested neuroprotective agent. CLINICAL TRIAL REGISTRATION: NCT02624401. Elsevier 2022-12-12 /pmc/articles/PMC10430865/ /pubmed/37588789 http://dx.doi.org/10.1016/j.bjao.2022.100114 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Article Nummela, Aleksi Laaksonen, Lauri Scheinin, Annalotta Kaisti, Kaike Vahlberg, Tero Neuvonen, Mikko Valli, Katja Revonsuo, Antti Perola, Markus Niemi, Mikko Scheinin, Harry Laitio, Timo Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry |
title | Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry |
title_full | Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry |
title_fullStr | Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry |
title_full_unstemmed | Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry |
title_short | Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry |
title_sort | circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and s-ketamine: a randomised controlled trial using tandem mass spectrometry |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430865/ https://www.ncbi.nlm.nih.gov/pubmed/37588789 http://dx.doi.org/10.1016/j.bjao.2022.100114 |
work_keys_str_mv | AT nummelaaleksi circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT laaksonenlauri circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT scheininannalotta circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT kaistikaike circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT vahlbergtero circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT neuvonenmikko circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT vallikatja circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT revonsuoantti circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT perolamarkus circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT niemimikko circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT scheininharry circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry AT laitiotimo circulatingoxylipinandbileacidprofilesofdexmedetomidinepropofolsevofluraneandsketaminearandomisedcontrolledtrialusingtandemmassspectrometry |