Cargando…
P1244: AN AUTOMATED QUANTIFICATION ALGORITHM FOR EVALUATING TOTAL METABOLIC TUMOR VOLUME IN PATIENTS WITH FDG-AVID LYMPHOMAS USING A DEEP LEARNING MODEL
Autores principales: | Xu, Tao, Jemaa, Skander, Kumar, Manas, Balasubramanian, Sandhya, Shamas-Din, Aisha, Lyalina, Svetlana, Ounadjela, Souhila, Malik, Bilal, Lee, Joe, Figueroa Morales, Salvador, Nielsen, Tina, Ad Carano, Rick, Kostakoglu, Lale, Capra, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431180/ http://dx.doi.org/10.1097/01.HS9.0000971868.53649.d2 |
Ejemplares similares
-
Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks
por: Jemaa, Skander, et al.
Publicado: (2020) -
Heart and bladder detection and segmentation on FDG PET/CT by deep learning
por: Wang, Xiaoyong, et al.
Publicado: (2022) -
Deep Ensembles Are Robust to Occasional Catastrophic Failures of Individual DNNs for Organs Segmentations in CT Images
por: Petrov, Yury, et al.
Publicado: (2023) -
Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments
por: Jemaa, S., et al.
Publicado: (2022) -
1244. Evaluation of Intraoperative Topical Vancomycin and the Incidence of Acute Kidney Injury
por: Blackman, Alison L, et al.
Publicado: (2019)