Cargando…
P1047: AIPSS-MF MACHINE LEARNING MODEL AS USEFUL PROGNOSTIC SCORE COMPARED TO IPSS IN THE SETTING OF MYELOFIBROSIS PATIENTS TREATED WITH RUXOLITINIB
Autores principales: | Duminuco, Andrea, Mosquera-Orgueira, Adrian, Nardo, Antonella, Raimondo, Francesco DI, Palumbo, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431325/ http://dx.doi.org/10.1097/01.HS9.0000971084.17982.f2 |
Ejemplares similares
-
AIPSS‐MF machine learning prognostic score validation in a cohort of myelofibrosis patients treated with ruxolitinib
por: Duminuco, Andrea, et al.
Publicado: (2023) -
Prediction of Survival and Prognosis Migration from Gold-Standard Scores in Myelofibrosis Patients Treated with Ruxolitinib Applying the RR6 Prognostic Model in a Monocentric Real-Life Setting
por: Duminuco, Andrea, et al.
Publicado: (2022) -
P1047: REAL-WORLD SAFETY OF RUXOLITINIB IN PATIENTS WITH INTERMEDIATE OR HIGH RISK OF PRIMARY MYELOFIBROSIS, POST-POLYCYTHEMIA VERA MYELOFIBROSIS OR POST-ESSENTIAL THROMBOCYTHEMIA MYELOFIBROSIS IN CHINA
por: Xu, Z., et al.
Publicado: (2022) -
Ruxolitinib for myelofibrosis
por: GU, LIAN, et al.
Publicado: (2013) -
P703: THE AIPSS-MDS MACHINE LEARNING MODEL PREDICTS OVERALL SURVIVAL AND LEUKEMIC TRANSFORMATION IN CMML: AN ANALYSIS OF THE SPANISH REGISTRY OF MDS
por: Mosquera-Orgueira, Adrian, et al.
Publicado: (2023)