Cargando…
Prediction model with multi-point relationship fusion via graph convolutional network: A case study on mining-induced surface subsidence
Accurate prediction of surface subsidence is of significance for analyzing the pattern of mining-induced surface subsidence, and for mining under buildings, railways, and water bodies. To address the problem that the existing prediction models ignore the correlation between subsidence points, result...
Autores principales: | Jiang, Baoxing, Zhang, Kun, Liu, Xiaopeng, Lu, Yuxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431667/ https://www.ncbi.nlm.nih.gov/pubmed/37585397 http://dx.doi.org/10.1371/journal.pone.0289846 |
Ejemplares similares
-
FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network
por: Zhang, Kun, et al.
Publicado: (2023) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
RNN-combined graph convolutional network with multi-feature fusion for tuberculosis cavity segmentation
por: Xiao, Zhitao, et al.
Publicado: (2023) -
Ringer: Systematic Mining of Malicious Domains by Dynamic Graph Convolutional Network
por: Liu, Zhicheng, et al.
Publicado: (2020) -
Subsidence prediction of overburden strata and ground surface in shallow coal seam mining
por: Cao, Jian, et al.
Publicado: (2021)