Cargando…
Link prediction on bipartite networks using matrix factorization with negative sample selection
We propose a new method for bipartite link prediction using matrix factorization with negative sample selection. Bipartite link prediction is a problem that aims to predict the missing links or relations in a bipartite network. One of the most popular solutions to the problem is via matrix factoriza...
Autores principales: | Peng, Siqi, Yamamoto, Akihiro, Ito, Kimihito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431684/ https://www.ncbi.nlm.nih.gov/pubmed/37585433 http://dx.doi.org/10.1371/journal.pone.0289568 |
Ejemplares similares
-
Link Prediction in Bipartite Nested Networks
por: Medo, Matúš, et al.
Publicado: (2018) -
Deep Link-Prediction Based on the Local Structure of Bipartite Networks
por: Lv, Hehe, et al.
Publicado: (2022) -
Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks
por: Wang, Wenjun, et al.
Publicado: (2017) -
A potential energy and mutual information based link prediction approach for bipartite networks
por: Kumar, Purushottam, et al.
Publicado: (2020) -
Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
por: Zhou, Feng, et al.
Publicado: (2021)