Cargando…

Early molecular layer interneuron hyperactivity triggers Purkinje neuron degeneration in SCA1

Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify...

Descripción completa

Detalles Bibliográficos
Autores principales: Pilotto, Federica, Douthwaite, Christopher, Diab, Rim, Ye, XiaoQian, Al qassab, Zahraa, Tietje, Christoph, Mounassir, Meriem, Odriozola, Adolfo, Thapa, Aishwarya, Buijsen, Ronald A.M., Lagache, Sophie, Uldry, Anne-Christine, Heller, Manfred, Müller, Stefan, van Roon-Mom, Willeke M.C., Zuber, Benoît, Liebscher, Sabine, Saxena, Smita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431915/
https://www.ncbi.nlm.nih.gov/pubmed/37321222
http://dx.doi.org/10.1016/j.neuron.2023.05.016
Descripción
Sumario:Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.