Cargando…
Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium
Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To co...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432146/ https://www.ncbi.nlm.nih.gov/pubmed/37593494 http://dx.doi.org/10.1016/j.bioactmat.2023.07.022 |
_version_ | 1785091338764550144 |
---|---|
author | Deng, Zicheng Gao, Wen Kohram, Fatemeh Li, Enhong Kalin, Tanya V. Shi, Donglu Kalinichenko, Vladimir V. |
author_facet | Deng, Zicheng Gao, Wen Kohram, Fatemeh Li, Enhong Kalin, Tanya V. Shi, Donglu Kalinichenko, Vladimir V. |
author_sort | Deng, Zicheng |
collection | PubMed |
description | Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body. In the present study, we successfully solved this problem by developing non-toxic poly(β-amino) ester (PBAE) nanoparticles with specific structure design and fluorinated modification for high efficiency and specific delivery of nucleic acids to the pulmonary endothelial cells. After intravenous administration, the PBAE nanoparticles were capable of delivering non-integrating DNA plasmids to lung microvascular endothelial cells but not to other lung cell types. IVIS whole body imaging and flow cytometry demonstrated that DNA plasmid were functional in the lung endothelial cells but not in endothelial cells of other organs. Fluorination of PBAE was required for lung endothelial cell-specific targeting. Hematologic analysis and liver and kidney metabolic panels demonstrated the lack of toxicity in experimental mice. Thus, fluorinated PBAE nanoparticles can be an ideal vehicle for gene therapy targeting lung microvascular endothelium in pulmonary vascular disorders. |
format | Online Article Text |
id | pubmed-10432146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-104321462023-08-17 Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium Deng, Zicheng Gao, Wen Kohram, Fatemeh Li, Enhong Kalin, Tanya V. Shi, Donglu Kalinichenko, Vladimir V. Bioact Mater Article Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body. In the present study, we successfully solved this problem by developing non-toxic poly(β-amino) ester (PBAE) nanoparticles with specific structure design and fluorinated modification for high efficiency and specific delivery of nucleic acids to the pulmonary endothelial cells. After intravenous administration, the PBAE nanoparticles were capable of delivering non-integrating DNA plasmids to lung microvascular endothelial cells but not to other lung cell types. IVIS whole body imaging and flow cytometry demonstrated that DNA plasmid were functional in the lung endothelial cells but not in endothelial cells of other organs. Fluorination of PBAE was required for lung endothelial cell-specific targeting. Hematologic analysis and liver and kidney metabolic panels demonstrated the lack of toxicity in experimental mice. Thus, fluorinated PBAE nanoparticles can be an ideal vehicle for gene therapy targeting lung microvascular endothelium in pulmonary vascular disorders. KeAi Publishing 2023-08-07 /pmc/articles/PMC10432146/ /pubmed/37593494 http://dx.doi.org/10.1016/j.bioactmat.2023.07.022 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Deng, Zicheng Gao, Wen Kohram, Fatemeh Li, Enhong Kalin, Tanya V. Shi, Donglu Kalinichenko, Vladimir V. Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium |
title | Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium |
title_full | Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium |
title_fullStr | Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium |
title_full_unstemmed | Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium |
title_short | Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium |
title_sort | fluorinated amphiphilic poly(β-amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the lung capillary endothelium |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432146/ https://www.ncbi.nlm.nih.gov/pubmed/37593494 http://dx.doi.org/10.1016/j.bioactmat.2023.07.022 |
work_keys_str_mv | AT dengzicheng fluorinatedamphiphilicpolybaminoesternanoparticleforhighlyefficientandspecificdeliveryofnucleicacidstothelungcapillaryendothelium AT gaowen fluorinatedamphiphilicpolybaminoesternanoparticleforhighlyefficientandspecificdeliveryofnucleicacidstothelungcapillaryendothelium AT kohramfatemeh fluorinatedamphiphilicpolybaminoesternanoparticleforhighlyefficientandspecificdeliveryofnucleicacidstothelungcapillaryendothelium AT lienhong fluorinatedamphiphilicpolybaminoesternanoparticleforhighlyefficientandspecificdeliveryofnucleicacidstothelungcapillaryendothelium AT kalintanyav fluorinatedamphiphilicpolybaminoesternanoparticleforhighlyefficientandspecificdeliveryofnucleicacidstothelungcapillaryendothelium AT shidonglu fluorinatedamphiphilicpolybaminoesternanoparticleforhighlyefficientandspecificdeliveryofnucleicacidstothelungcapillaryendothelium AT kalinichenkovladimirv fluorinatedamphiphilicpolybaminoesternanoparticleforhighlyefficientandspecificdeliveryofnucleicacidstothelungcapillaryendothelium |