Cargando…
An extended clinical EEG dataset with 15,300 automatically labelled recordings for pathology decoding
Automated clinical EEG analysis using machine learning (ML) methods is a growing EEG research area. Previous studies on binary EEG pathology decoding have mainly used the Temple University Hospital (TUH) Abnormal EEG Corpus (TUAB) which contains approximately 3,000 manually labelled EEG recordings....
Autores principales: | Kiessner, Ann-Kathrin, Schirrmeister, Robin T., Gemein, Lukas A.W., Boedecker, Joschka, Ball, Tonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432245/ https://www.ncbi.nlm.nih.gov/pubmed/37544168 http://dx.doi.org/10.1016/j.nicl.2023.103482 |
Ejemplares similares
-
Deep learning with convolutional neural networks for EEG decoding and visualization
por: Schirrmeister, Robin Tibor, et al.
Publicado: (2017) -
Hybrid Brain-Computer-Interfacing for Human-Compliant Robots: Inferring Continuous Subjective Ratings With Deep Regression
por: Fiederer, Lukas D. J., et al.
Publicado: (2019) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020) -
EEG Dataset for RSVP and P300 Speller Brain-Computer Interfaces
por: Won, Kyungho, et al.
Publicado: (2022) -
Intracranial EEG recording in autoimmune epilepsy dataset
por: Gillinder, Lisa, et al.
Publicado: (2019)