Cargando…
Cancer drug response prediction with surrogate modeling-based graph neural architecture search
MOTIVATION: Understanding drug–response differences in cancer treatments is one of the most challenging aspects of personalized medicine. Recently, graph neural networks (GNNs) have become state-of-the-art methods in many graph representation learning scenarios in bioinformatics. However, building a...
Autores principales: | Oloulade, Babatounde Moctard, Gao, Jianliang, Chen, Jiamin, Al-Sabri, Raeed, Wu, Zhenpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432359/ https://www.ncbi.nlm.nih.gov/pubmed/37555809 http://dx.doi.org/10.1093/bioinformatics/btad478 |
Ejemplares similares
-
A Principal Neighborhood Aggregation-Based Graph Convolutional Network for Pneumonia Detection
por: Guail, Akram Ali Ali, et al.
Publicado: (2022) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Community search over big graphs
por: Huang, Xin, et al.
Publicado: (2019) -
Surrogate explanations for role discovery on graphs
por: Cunningham, Eoghan, et al.
Publicado: (2023)