Cargando…
Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction
Air pollution is a leading cause of human diseases. Accurate air quality predictions are critical to human health. However, it is difficult to extract spatiotemporal features among complex spatiotemporal dependencies effectively. Most existing methods focus on constructing multiple spatial dependenc...
Autores principales: | Liu, Hexiang, Han, Qilong, Sun, Hui, Sheng, Jingyu, Yang, Ziyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432486/ https://www.ncbi.nlm.nih.gov/pubmed/37587186 http://dx.doi.org/10.1038/s41598-023-39286-0 |
Ejemplares similares
-
An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification
por: Li, Menglei, et al.
Publicado: (2022) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
Pathological-Gait Recognition Using Spatiotemporal Graph Convolutional Networks and Attention Model
por: Kim, Jungi, et al.
Publicado: (2022) -
Spatiotemporal Graph Convolutional Networks for Earthquake Source Characterization
por: Zhang, Xitong, et al.
Publicado: (2022) -
Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
por: Wang, Yifan, et al.
Publicado: (2023)