Cargando…
Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms
This study developed a machine learning algorithm to predict gestational diabetes mellitus (GDM) using retrospective data from 34,387 pregnancies in multi-centers of South Korea. Variables were collected at baseline, E0 (until 10 weeks’ gestation), E1 (11–13 weeks’ gestation) and M1 (14–24 weeks’ ge...
Autores principales: | Kang, Byung Soo, Lee, Seon Ui, Hong, Subeen, Choi, Sae Kyung, Shin, Jae Eun, Wie, Jeong Ha, Jo, Yun Sung, Kim, Yeon Hee, Kil, Kicheol, Chung, Yoo Hyun, Jung, Kyunghoon, Hong, Hanul, Park, In Yang, Ko, Hyun Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432552/ https://www.ncbi.nlm.nih.gov/pubmed/37587201 http://dx.doi.org/10.1038/s41598-023-39680-8 |
Ejemplares similares
-
Prediction of Pregnancy-Associated Hypertension Using a Scoring System: A Multicenter Cohort Study
por: Jo, Yun Sung, et al.
Publicado: (2023) -
Multiple birth rates of Korea and fetal/neonatal/infant mortality in multiple gestation
por: Ko, Hyun Sun, et al.
Publicado: (2018) -
Prediction of Emergency Cesarean Section Using Machine Learning Methods: Development and External Validation of a Nationwide Multicenter Dataset in Republic of Korea
por: Wie, Jeong Ha, et al.
Publicado: (2022) -
Adipokines and Insulin Resistance According to Characteristics of Pregnant Women with Gestational Diabetes Mellitus
por: Jeon, Eon Ju, et al.
Publicado: (2017) -
Diagnosis of gestational diabetes mellitus in Asian-Indian women
por: Balaji, V., et al.
Publicado: (2011)