Cargando…

Acer truncatum leaves extract modulates gut microbiota, improves antioxidant capacity, and alleviates lipopolysaccharide-induced inflammation in broilers

This study investigated the appropriate way of dietary Acer truncatum leaves (ATL) addition, the effect of disease prevention and its mechanism of action. In experiment 1, 192 Arbor Acres broilers were assigned to 4 treatment groups, fed with basal diets containing 2% bran, replacing it with primary...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jiongyan, Liang, Saisai, Qin, Kailong, Jia, Bingzheng, Ren, Zhouzheng, Yang, Xiaojun, Yang, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432845/
https://www.ncbi.nlm.nih.gov/pubmed/37562124
http://dx.doi.org/10.1016/j.psj.2023.102951
Descripción
Sumario:This study investigated the appropriate way of dietary Acer truncatum leaves (ATL) addition, the effect of disease prevention and its mechanism of action. In experiment 1, 192 Arbor Acres broilers were assigned to 4 treatment groups, fed with basal diets containing 2% bran, replacing it with primary and fermented ATL, and additional 0.3% ATL extract to the basal diet for 42 d, respectively. In experiment 2, 144 broilers were assigned to 3 treatment groups for 21-d trial: (1) C-N group, basal diets, and injected with 0.9% (w/v) sterile saline; (2) C-L group, basal diets, and injected with lipopolysaccharide (LPS); (3) T-L group, ATL diets and injected with LPS. In experiment 1, ATL significantly decreased the index of abdominal fat at 42 d (P < 0.05). ATL extract had a better ability to improve antioxidant capacity and reduce inflammatory levels among all treatment groups, which significantly decreased the content of MDA in the liver and ileum mucosa at 21 d, and increased the expression of IL-10 and Occludin in jejunal mucosa at 42 d (P < 0.05). In experiment 2, ATL significantly increased the level of T-AOC in the liver, decreased the expression of NF-κB in the jejunal mucosa and ileum mucosa (P < 0.05), and restored LPS-induced the changed level of CAT in jejunal mucosa, the expression of IL-6, Claudin-1, and ZO-1 in jejunal mucosa and IL-1β in ileum mucosa (P < 0.05). Analysis of gut microbiota indicated that ATL enhanced the abundances of Bacteroidota and reduced the proportion of Firmicutes (P < 0.05), and the changed levels of T-AOC in body, IL-1β, IL-6, IL-10, and NF-κB in jejunum mucosa and propionic acid in cecal were associated with gut microbiota. Collectively, our data showed that the extract of ATL had a better antioxidant and anti-inflammatory effects than primality and fermented. Extraction of ATL modulated intestinal microbiota, and had a protective effect on oxidative stress, inflammation, and intestinal barrier function in broilers challenged with LPS.