Cargando…
A dataset of pomegranate growth stages for machine learning-based monitoring and analysis
Machine learning and deep learning have grown very rapidly in recent years and are widely used in agriculture. Neat and clean datasets are a major requirement for building accurate and robust machine learning models and minimizing misclassification in real-time environments. To achieve this goal, we...
Autores principales: | Zhao, Jifei, Almodfer, Rolla, Wu, Xiaoying, Wang, Xinfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432946/ https://www.ncbi.nlm.nih.gov/pubmed/37600594 http://dx.doi.org/10.1016/j.dib.2023.109468 |
Ejemplares similares
-
Image dataset of pomegranate fruits (Punica granatum) for various machine vision applications
por: Kumar R, Arun, et al.
Publicado: (2021) -
Chinese diabetes datasets for data-driven machine learning
por: Zhao, Qinpei, et al.
Publicado: (2023) -
QDataSet, quantum datasets for machine learning
por: Perrier, Elija, et al.
Publicado: (2022) -
Dataset of cannabis seeds for machine learning applications
por: Chumchu, Prawit, et al.
Publicado: (2023) -
A benchmark dataset for machine learning in ecotoxicology
por: Schür, Christoph, et al.
Publicado: (2023)