Cargando…
Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
In this paper, we present and compare four methods to enforce Dirichlet boundary conditions in Physics-Informed Neural Networks (PINNs) and Variational Physics-Informed Neural Networks (VPINNs). Such conditions are usually imposed by adding penalization terms in the loss function and properly choosi...
Autores principales: | Berrone, S., Canuto, C., Pintore, M., Sukumar, N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432987/ https://www.ncbi.nlm.nih.gov/pubmed/37600384 http://dx.doi.org/10.1016/j.heliyon.2023.e18820 |
Ejemplares similares
-
Artificial Neural Networks to Solve the Singular Model with Neumann–Robin, Dirichlet and Neumann Boundary Conditions
por: Nisar, Kashif, et al.
Publicado: (2021) -
Physics informed neural network for charged particles surrounded by conductive boundaries
por: Hafezianzade, Fatemeh, et al.
Publicado: (2023) -
The Dynamics of Neural Fields on Bounded Domains: An Interface Approach for Dirichlet Boundary Conditions
por: Gökçe, Aytül, et al.
Publicado: (2017) -
Wave Equation Modeling via Physics-Informed Neural Networks: Models of Soft and Hard Constraints for Initial and Boundary Conditions
por: Alkhadhr, Shaikhah, et al.
Publicado: (2023) -
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics
por: WU, W., et al.
Publicado: (2023)