Cargando…

The Role of Social Media for Identifying Adverse Drug Events Data in Pharmacovigilance: Protocol for a Scoping Review

BACKGROUND: Adverse drug events (ADEs) are a considerable public health burden resulting in disability, hospitalization, and death. Even those ADEs deemed nonserious can severely impact a patient’s quality of life and adherence to intervention. Monitoring medication safety, however, is challenging....

Descripción completa

Detalles Bibliográficos
Autores principales: Golder, Su, O'Connor, Karen, Wang, Yunwen, Gonzalez Hernandez, Graciela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433020/
https://www.ncbi.nlm.nih.gov/pubmed/37531158
http://dx.doi.org/10.2196/47068
Descripción
Sumario:BACKGROUND: Adverse drug events (ADEs) are a considerable public health burden resulting in disability, hospitalization, and death. Even those ADEs deemed nonserious can severely impact a patient’s quality of life and adherence to intervention. Monitoring medication safety, however, is challenging. Social media may be a useful adjunct for obtaining real-world data on ADEs. While many studies have been undertaken to detect adverse events on social media, a consensus has not yet been reached as to the value of social media in pharmacovigilance or its role in pharmacovigilance in relation to more traditional data sources. OBJECTIVE: The aim of the study is to evaluate and characterize the use of social media in ADE detection and pharmacovigilance as compared to other data sources. METHODS: A scoping review will be undertaken. We will search 11 bibliographical databases as well as Google Scholar, hand-searching, and forward and backward citation searching. Records will be screened in Covidence by 2 independent reviewers at both title and abstract stage as well as full text. Studies will be included if they used any type of social media (such as Twitter or patient forums) to detect any type of adverse event associated with any type of medication and then compared the results from social media to any other data source (such as spontaneous reporting systems or clinical literature). Data will be extracted using a data extraction sheet piloted by the authors. Important data on the types of methods used (such as machine learning), any limitations of the methods used, types of adverse events and drugs searched for and included, availability of data and code, details of the comparison data source, and the results and conclusions will be extracted. RESULTS: We will present descriptive summary statistics as well as identify any patterns in the types and timing of ADEs detected, including but not limited to the similarities and differences in what is reported, gaps in the evidence, and the methods used to extract ADEs from social media data. We will also summarize how the data from social media compares to conventional data sources. The literature will be organized by the data source for comparison. Where possible, we will analyze the impact of the types of adverse events, the social media platform used, and the methods used. CONCLUSIONS: This scoping review will provide a valuable summary of a large body of research and important information for pharmacovigilance as well as suggest future directions of further research in this area. Through the comparisons with other data sources, we will be able to conclude the added value of social media in monitoring adverse events of medications, in terms of type of adverse events and timing. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/47068