Cargando…
Random projection forest initialization for graph convolutional networks
Graph convolutional networks (GCNs) were a great step towards extending deep learning to graphs. GCN uses the graph [Formula: see text] and the feature matrix [Formula: see text] as inputs. However, in most cases the graph [Formula: see text] is missing and we are only provided with the feature matr...
Autores principales: | Alshammari, Mashaan, Stavrakakis, John, Ahmed, Adel F., Takatsuka, Masahiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433121/ https://www.ncbi.nlm.nih.gov/pubmed/37601292 http://dx.doi.org/10.1016/j.mex.2023.102315 |
Ejemplares similares
-
Enhancing Basketball Game Outcome Prediction through Fused Graph Convolutional Networks and Random Forest Algorithm
por: Zhao, Kai, et al.
Publicado: (2023) -
Introduction to graph neural networks
por: Liu, Zhiyuan, et al.
Publicado: (2020) -
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020) -
Modeling students’ performance using graph convolutional networks
por: Mubarak, Ahmed A., et al.
Publicado: (2022) -
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020)