Cargando…
The limitations of machine learning models for predicting scientific replicability
Autores principales: | Crockett, M. J., Bai, Xuechunzi, Kapoor, Sayash, Messeri, Lisa, Narayanan, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433273/ https://www.ncbi.nlm.nih.gov/pubmed/37549293 http://dx.doi.org/10.1073/pnas.2307596120 |
Ejemplares similares
-
Leakage and the reproducibility crisis in machine-learning-based science
por: Kapoor, Sayash, et al.
Publicado: (2023) -
Reply to Crockett et al. and Mottelson and Kontogiorgos: Machine learning’s scientific significance and future impact on replicability research
por: Youyou, Wu, et al.
Publicado: (2023) -
Demystifying machine learning for mortality prediction
por: Smit, J. M., et al.
Publicado: (2021) -
A Machine Learning Model to Predict Citation Counts of Scientific Papers in Otology Field
por: Alohali, Yousef A., et al.
Publicado: (2022) -
Limits of Prediction for Machine Learning in Drug Discovery
por: von Korff, Modest, et al.
Publicado: (2022)