Cargando…

Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites

[Image: see text] The interfacial bonding between carbon fibers and the resin matrix affects the mechanical properties of carbon fibers, and the increase of modulus brings a challenge to the interfacial properties of carbon fibers. The traditional anodic oxidation with ammonium bicarbonate as an ele...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Jing, Tian, Siyuan, Zhou, Hang, Gao, Aijun, Xu, Lianghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433464/
https://www.ncbi.nlm.nih.gov/pubmed/37599951
http://dx.doi.org/10.1021/acsomega.3c02596
_version_ 1785091652128342016
author Xiao, Jing
Tian, Siyuan
Zhou, Hang
Gao, Aijun
Xu, Lianghua
author_facet Xiao, Jing
Tian, Siyuan
Zhou, Hang
Gao, Aijun
Xu, Lianghua
author_sort Xiao, Jing
collection PubMed
description [Image: see text] The interfacial bonding between carbon fibers and the resin matrix affects the mechanical properties of carbon fibers, and the increase of modulus brings a challenge to the interfacial properties of carbon fibers. The traditional anodic oxidation with ammonium bicarbonate as an electrolyte has a limited effect on the surface treatment for high-modulus carbon fibers. In this paper, anodic oxidation with an acidic electrolyte is used to treat high-modulus carbon fibers. The influence mechanism of a graphitized structure on the anodizing reaction of the carbon fiber surface was studied. Raman spectroscopy, XPS, scanning electron microscopy, dynamic contact angle, and micro-debonding were used to characterize the effect of surface treatment and its influence on interfacial properties. The results show that with a certain concentration of sulfuric acid as an electrolyte, the oxidation of the carbon fiber surface with high modulus occurs more on the graphite boundary defects. Carbonylation occurs mainly in carbon fibers with high modulus. The surface of the carbon fiber with a relatively low modulus is mainly hydroxylated and carboxylated. The surface energy and interfacial properties of high-modulus carbon fibers were improved effectively by anodic oxidation with sulfuric acid as an electrolyte. Under the condition that the mechanical properties of carbon fibers are not decreased, the surface energy of high-modulus carbon fibers with 352 GPa increases from 36.17 to 45.41 mN/m, and the interfacial shear strength (IFSS) with the epoxy resin increases by 80.8% from 34.9 to 63.1 MPa. When the fiber modulus is 455 GPa, the surface energy of the carbon fiber increases from 32.32 to 43.73 mN/m, and IFSS increases by 253.4% from 11.8 to 41.7 MPa.
format Online
Article
Text
id pubmed-10433464
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104334642023-08-18 Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites Xiao, Jing Tian, Siyuan Zhou, Hang Gao, Aijun Xu, Lianghua ACS Omega [Image: see text] The interfacial bonding between carbon fibers and the resin matrix affects the mechanical properties of carbon fibers, and the increase of modulus brings a challenge to the interfacial properties of carbon fibers. The traditional anodic oxidation with ammonium bicarbonate as an electrolyte has a limited effect on the surface treatment for high-modulus carbon fibers. In this paper, anodic oxidation with an acidic electrolyte is used to treat high-modulus carbon fibers. The influence mechanism of a graphitized structure on the anodizing reaction of the carbon fiber surface was studied. Raman spectroscopy, XPS, scanning electron microscopy, dynamic contact angle, and micro-debonding were used to characterize the effect of surface treatment and its influence on interfacial properties. The results show that with a certain concentration of sulfuric acid as an electrolyte, the oxidation of the carbon fiber surface with high modulus occurs more on the graphite boundary defects. Carbonylation occurs mainly in carbon fibers with high modulus. The surface of the carbon fiber with a relatively low modulus is mainly hydroxylated and carboxylated. The surface energy and interfacial properties of high-modulus carbon fibers were improved effectively by anodic oxidation with sulfuric acid as an electrolyte. Under the condition that the mechanical properties of carbon fibers are not decreased, the surface energy of high-modulus carbon fibers with 352 GPa increases from 36.17 to 45.41 mN/m, and the interfacial shear strength (IFSS) with the epoxy resin increases by 80.8% from 34.9 to 63.1 MPa. When the fiber modulus is 455 GPa, the surface energy of the carbon fiber increases from 32.32 to 43.73 mN/m, and IFSS increases by 253.4% from 11.8 to 41.7 MPa. American Chemical Society 2023-07-31 /pmc/articles/PMC10433464/ /pubmed/37599951 http://dx.doi.org/10.1021/acsomega.3c02596 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Xiao, Jing
Tian, Siyuan
Zhou, Hang
Gao, Aijun
Xu, Lianghua
Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites
title Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites
title_full Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites
title_fullStr Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites
title_full_unstemmed Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites
title_short Construction of Polar Functional Groups on the Surface of a High-Modulus Carbon Fiber and Its Effect on the Interfacial Properties of Composites
title_sort construction of polar functional groups on the surface of a high-modulus carbon fiber and its effect on the interfacial properties of composites
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433464/
https://www.ncbi.nlm.nih.gov/pubmed/37599951
http://dx.doi.org/10.1021/acsomega.3c02596
work_keys_str_mv AT xiaojing constructionofpolarfunctionalgroupsonthesurfaceofahighmoduluscarbonfiberanditseffectontheinterfacialpropertiesofcomposites
AT tiansiyuan constructionofpolarfunctionalgroupsonthesurfaceofahighmoduluscarbonfiberanditseffectontheinterfacialpropertiesofcomposites
AT zhouhang constructionofpolarfunctionalgroupsonthesurfaceofahighmoduluscarbonfiberanditseffectontheinterfacialpropertiesofcomposites
AT gaoaijun constructionofpolarfunctionalgroupsonthesurfaceofahighmoduluscarbonfiberanditseffectontheinterfacialpropertiesofcomposites
AT xulianghua constructionofpolarfunctionalgroupsonthesurfaceofahighmoduluscarbonfiberanditseffectontheinterfacialpropertiesofcomposites